Browse > Article
http://dx.doi.org/10.12989/gae.2022.31.1.099

The influence of Winkler-Pasternak elastic foundations on the natural frequencies of imperfect functionally graded sandwich beams  

Avcar, Mehmet (Department of Civil Engineering, Faculty of Engineering, Suleyman Demirel University)
Hadji, Lazreg (Faculty of Civil Engineering, Ton Duc Thang University)
Akan, Recep (Department of Civil Engineering, Faculty of Engineering, Suleyman Demirel University)
Publication Information
Geomechanics and Engineering / v.31, no.1, 2022 , pp. 99-112 More about this Journal
Abstract
The present study examines the natural frequencies (NFs) of perfect/imperfect functionally graded sandwich beams (P/IP-FGSBs), which are composed of a porous core constructed of functionally graded materials (FGMs) and a homogenous isotropic metal and ceramic face sheets resting on elastic foundations. To accomplish this, the material properties of the FGSBs are assumed to vary continuously along the thickness direction as a function of the volume fraction of constituents expressed by the modified rule of the mixture, which includes porosity volume fraction represented using four distinct types of porosity distribution models. Additionally, to characterize the reaction of the two-parameter elastic foundation to the Perfect/Imperfect (P/IP) FGSBs, the medium is assumed to be linear, homogeneous, and isotropic, and it is described using the Winkler-Pasternak model. Furthermore, the kinematic relationship of the P/IP-FGSBs resting on the Winkler-Pasternak elastic foundations (WPEFs) is described using trigonometric shear deformation theory (TrSDT), and the equations of motion are constructed using Hamilton's principle. A closed-form solution is developed for the free vibration analysis of P/IP-FGSBs resting on the WPEFs under four distinct boundary conditions (BCs). To validate the new formulation, extensive comparisons with existing data are made. A detailed investigation is carried out for the effects of the foundation coefficients, mode numbers (MNs), porosity volume fraction, power-law index, span to depth ratio, porosity distribution patterns (PDPs), skin core skin thickness ratios (SCSTR), and BCs on the values of the NFs of the P/IP-FGSBs.
Keywords
boundary conditions; FGMs; free vibration; porosity; sandwich beams; Winkler-Pasternak elastic foundations;
Citations & Related Records
Times Cited By KSCI : 33  (Citation Analysis)
연도 인용수 순위
1 Akbas, S.D. (2018), "Forced vibration analysis of functionally graded porous deep beams", Compos. Struct., 186, 293-302. https://doi.org/10.1016/j.compstruct.2017.12.013U.   DOI
2 Akgoz, B. and Civalek, O. (2018), "Vibrational characteristics of embedded microbeams lying on a two-parameter elastic foundation in thermal environment", Compos. B. Eng., 150, 68-77. https://doi.org/10.1016/j.compositesb.2018.05.049.   DOI
3 Al-Furjan, M.S.H., Xu, M.X., Farrokhian, A., Jafari, G.S., Shen, X. and Kolahchi, R. (2022), "On wave propagation in piezoelectric-auxetic honeycomb-2D-FGM micro-sandwich beams based on modified couple stress and refined zigzag theories", Wave Random. Complex. Media, 1-25. https://doi.org/10.1080/17455030.2022.2030499.   DOI
4 Sayyad, A.S. and Ghugal, Y.M. (2019), "A sinusoidal beam theory for functionally graded sandwich curved beams", Compos. Struct., 226, 111246-111246. https://doi.org/10.1016/j.compstruct.2019.111246.   DOI
5 Sayyad, A.S. and Ghugal, Y.M. (2021), "A unified five-degree-of-freedom theory for the bending analysis of softcore and hardcore functionally graded sandwich beams and plates", J. Sandw. Struct. Mater., 23(2), 473-506. https://doi.org/10.1177/1099636219840980.   DOI
6 Hetenyi, M. (1946), Beams on Elastic Foundation; Theory with Applications in the Fields of Civil and Mechanical Engineering, University of Michigan Press, Ann Arbor.
7 Hong, C.Q., Du, J.C., Liang, J., Zhang, X.H. and Han, J.C. (2011), "Functionally graded porous ceramics with dense surface layer produced by freeze-casting", Ceram. Int., 37(8), 3717-3722. https://doi.org/10.1016/j.ceramint.2011.04.119.   DOI
8 Madenci, E. and Ozkilic, Y.O. (2021), "Free vibration analysis of open-cell FG porous beams: analytical, numerical and ANN approaches", Steel Compos. Struct., 40(2), 157-173. https://doi.org/10.12989/scs.2021.40.2.157.   DOI
9 Mechab, I., El Meiche, N. and Bernard, F. (2017), "Analytical study for the development of a new warping function for high order beam theory", Compos. B Eng., 119, 18-31. https://doi.org/10.1016/j.compositesb.2017.03.006.   DOI
10 Merzoug, M., Bourada, M., Sekkal, M., Abir, A.C., Chahrazed, B., Benyoucef, S. and Benachour, A. (2020), "2D and quasi 3D computational models for thermoelastic bending of FG beams on variable elastic foundation: Effect of the micromechanical models", Geomech. Eng., 22(4), 361-374. https://doi.org/10.12989/gae.2020.22.4.361.   DOI
11 Shen, H.S. (2011), "A novel technique for nonlinear analysis of beams on two-parameter elastic foundations", Int. J. Struct. Stab. Dyn., 11(6), 999-1014. https://doi.org/10.1142/S0219455411004440.   DOI
12 Mu, L. and Zhao, G.P. (2016), "Fundamental frequency analysis of sandwich beams with functionally graded face and metallic foam core", Shock Vib., 2016, Article ID 3287645. https://doi.org/10.1155/2016/3287645.   DOI
13 Selvadurai, A.P.S. (1979), Elastic Analysis of Soil-Foundation Interaction, Elsevier.
14 Shen, H.S. (2009), Functionally Graded Materials: Nonlinear Analysis of Plates and Shells, CRC Press.
15 Simsek, M. (2010), "Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories", Nucl. Eng. Des., 240(4), 697-705. https://doi.org/10.1016/j.nucengdes.2009.12.013.   DOI
16 Simsek, M. and Al-shujairi, M. (2017), "Static, free and forced vibration of functionally graded (FG) sandwich beams excited by two successive moving harmonic loads", Compos. B. Eng., 108, 18-34. https://doi.org/10.1016/j.compositesb.2016.09.098.   DOI
17 Sina, S.A., Navazi, H.M. and Haddadpour, H. (2009), "An analytical method for free vibration analysis of functionally graded beams", Mater. Des., 30(3), 741-747. https://doi.org/10.1016/j.matdes.2008.05.015.   DOI
18 Songsuwan, W., Pimsarn, M. and Wattanasakulpong, N. (2018), "Dynamic responses of functionally graded sandwich beams resting on elastic foundation under harmonic moving loads", Int. J. Struct. Stab. Dyn., 18(09), 1850112. https://doi.org/10.1142/S0219455418501122.   DOI
19 Bouiadjra, R.B., Bachiri, A., Benyoucef, S., Fahsi, B. and Bernard, F. (2020), "An investigation of the thermodynamic effect on the response of FG beam on elastic foundation", Struct. Eng. Mech., 76(1), 115-127. https://doi.org/10.12989/sem.2020.76.1.115.   DOI
20 Bouafia, K., Selim, M.M., Bourada, F., Bousahla, A.A., Bourada, M., Tounsi, A., Bedia, E.A.A. and Tounsi, A. (2021), "Bending and free vibration characteristics of various compositions of FG plates on elastic foundation via quasi 3D HSDT model", Steel Compos. Struct., 41(4), 487-50.3 https://doi.org/10.12989/scs.2021.41.4.487.   DOI
21 Bowles, J.E. (1988), Foundation Analysis and Design, McGraw Hill, New York.
22 Calio, I. and Greco, A. (2013), "Free vibrations of Timoshenko beam-columns on Pasternak foundations", J. Vib. Control, 19(5), 686-696. https://doi.org/10.1177/1077546311433609.   DOI
23 Chaabane, L.A., Bourada, F., Sekkal, M., Zerouati, S., Zaoui, F.Z., Tounsi, A., Derras, A., Bousahla, A.A. and Tounsi, A. (2019), "Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation", Struct. Eng. Mech., 71(2), 185-196. https://doi.org/10.12989/sem.2019.71.2.185.   DOI
24 Chen, D., Yang, J. and Kitipornchai, S. (2019), "Buckling and bending analyses of a novel functionally graded porous plate using Chebyshev-Ritz method", Arch. Civil Mech. Eng., 19(1), 157-170.   DOI
25 Civalek, O. (2013), "Nonlinear dynamic response of laminated plates resting on nonlinear elastic foundations by the discrete singular convolution-differential quadrature coupled approaches", Compos. B Eng., 50, 171-179. https://doi.org/10.1016/j.compositesb.2013.01.027.   DOI
26 Al Rjoub, Y.S. and Hamad, A.G. (2016), "Free vibration of functionally Euler-Bernoulli and Timoshenko graded porous beams using the transfer matrix method", KSCE J. Civil Eng., 21(3), 792-806. https://doi.org/10.1007/s12205-016-0149-6.   DOI
27 Tahir, S.I., Chikh, A., Tounsi, A., Al-Osta, M.A., Al-Dulaijan, S.U. and Al-Zahrani, M.M. (2021), "Wave propagation analysis of a ceramic-metal functionally graded sandwich plate with different porosity distributions in a hygro-thermal environment", Compos. Struct., 269, 114030. https://doi.org/10.1016/j.compstruct.2021.114030.   DOI
28 Al-Saedi, D.S.J., Masood, S.H., Faizan-Ur-Rab, M., Alomarah, A. and Ponnusamy, P. (2018), "Mechanical properties and energy absorption capability of functionally graded F2BCC lattice fabricated by SLM", Mater. Des., 144, 32-44. https://doi.org/10.1016/j.matdes.2018.01.059.   DOI
29 Al-Furjan, M.S.H., Yang, Y., Farrokhian, A., Shen, X., Kolahchi, R. and Rajak, D.K. (2021), "Dynamic instability of nanocomposite piezoelectric-leptadenia pyrotechnica rheological elastomer-porous functionally graded materials micro viscoelastic beams at various strain gradient higher-order theories", Polym. Compos., 43(1), 282-298. https://doi.org/10.1002/pc.26373.   DOI
30 Alnujaie, A., Akbas, S.D., Eltaher, M.A. and Assie, A. (2021), "Forced vibration of a functionally graded porous beam resting on viscoelastic foundation", Geomech. Eng., 24(1), 91-103. https://doi.org/10.12989/gae.2021.24.1.091.   DOI
31 Wattanasakulpong, N., Chaikittiratana, A. and Pornpeerakeat, S. (2018), "Chebyshev collocation approach for vibration analysis of functionally graded porous beams based on third-order shear deformation theory", Acta Mech. Sin., 34(6), 1124-1135. https://doi.org/10.1007/s10409-018-0770-3.   DOI
32 Moniri Bidgoli, A.M., Daneshmehr, A.R. and Kolahchi, R. (2014), "Analytical bending solution of fully clamped orthotropic rectangular plates resting on elastic foundations by the finite integral transform method", J. Appl. Comput. Mech., 1(2), 52-58.
33 Civalek, O. and Acar, M.H. (2007), "Discrete singular convolution method for the analysis of Mindlin plates on elastic foundations", Int. J. Press. Vessel. Pip., 84(9), 527-535. https://doi.org/10.1016/j.ijpvp.2007.07.001.   DOI
34 Daikh, A.A., Guerroudj, M., El Adjrami, M. and Megueni, A. (2019), "Thermal buckling of functionally graded sandwich beams", Adv. Mat. Res., 1156, 43-59. https://doi.org/10.4028/www.scientific.net/AMR.1156.43.   DOI
35 Das, B.M. and Sivakugan, N. (2018), Principles of Foundation Engineering, Cengage learning
36 Zhou, C.C., Wang, P. and Li, W. (2011), "Fabrication of functionally graded porous polymer via supercritical CO2 foaming", Compos. B Eng., 42(2), 318-325. https://doi.org/10.1016/j.compositesb.2010.11.001.   DOI
37 Zouatnia, N., Hadji, L. and Kassoul, A. (2018), "An efficient and simple refined theory for free vibration of functionally graded plates under various boundary conditions", Geomech. Eng., 16(1), 1-9. https://doi.org/10.12989/gae.2018.16.1.001.   DOI
38 Vo, T.P., Thai, H.T., Nguyen, T.K., Inam, F. and Lee, J.H. (2015), "A quasi-3D theory for vibration and buckling of functionally graded sandwich beams", Compos. Struct., 119, 1-12. https://doi.org/10.1016/j.compstruct.2014.08.006.   DOI
39 Vo, T.P., Thai, H.T., Nguyen, T.K., Maheri, A. and Lee, J. (2014), "Finite element model for vibration and buckling of functionally graded sandwich beams based on a refined shear deformation theory", Eng. Struct., 64, 12-22. https://doi.org/10.1016/j.engstruct.2014.01.029.   DOI
40 Wattanasakulpong, N. and Ungbhakorn, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aerosp. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002.   DOI
41 Winkler, E. (1867), Die Lehre von der Elasticitaet und Festigkeit, Dominicus, Prag.
42 Guellil, M., Saidi, H., Bourada, F., Bousahla, A.A., Tounsi, A., Al-Zahrani, M.M., Hussain, M. and Mahmoud, S.R. (2021), "Influences of porosity distributions and boundary conditions on mechanical bending response of functionally graded plates resting on Pasternak foundation", Steel Compos. Struct., 38(1), 1-15. https://doi.org/10.12989/scs.2021.38.1.001.   DOI
43 Delale, F. and Erdogan, F. (1983), "The crack problem for a nonhomogeneous plane", J. Appl. Mech., 50(3), 609-614. https://doi.org/10.1115/1.3167098.   DOI
44 Djedid, I.K., Benachour, A., Houari, M.S.A., Tounsi, A. and Ameur, M. (2014), "A n-order four variable refined theory for bending and free vibration of functionally graded plates", Steel Compos. Struct., 17(1), 21-46. https://doi.org/10.12989/scs.2014.17.1.021.   DOI
45 Du, M.J., Liu, J., Ye, W.B., Yang, F. and Lin, G. (2022), "A new semi-analytical approach for bending, buckling and free vibration analyses of power law functionally graded beams", Struct. Eng. Mech., 81(2), 179-194. https://doi.org/10.12989/sem.2022.81.2.179.   DOI
46 Dutta, S.C. and Roy, R. (2002), "A critical review on idealization and modeling for interaction among soil-foundation-structure system", Comput. Struct., 80(20-21), 1579-1594. https://doi.org/10.1016/S0045-7949(02)00115-3.   DOI
47 Galeban, M.R., Mojahedin, A., Taghavi, Y. and Jabbari, M. (2016), "Free vibration of functionally graded thin beams made of saturated porous materials", Steel Compos. Struct., 21(5), 999-1016. https://doi.org/10.12989/scs.2016.21.5.999.   DOI
48 Hadji, L. and Avcar, M. (2021), "Free vibration analysis of FG porous sandwich plates under various boundary conditions", J. Appl. Comput. Mech., 7(2), 505-519. https://doi.org/10.22055/Jacm.2020.35328.2628.   DOI
49 Koizumi, M. (1997), "FGM activities in Japan", Compos. B Eng., 28(1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9.   DOI
50 Liu, G., Wu, S., Shahsavari, D., Karami, B. and Tounsi, A. (2022), "Dynamics of imperfect inhomogeneous nanoplate with exponentially-varying properties resting on viscoelastic foundation", Eur. J. Mech. A. Solid., 95, 104649. https://doi.org/10.1016/j.euromechsol.2022.104649.   DOI
51 Farrokh, M. and Taharpur, M. (2021), "Optimization of porosity distribution of FGP beams considering buckling strength", Struct. Eng. Mech., 79(6), 711-722. https://doi.org/10.12989/sem.2021.79.6.711.   DOI
52 Xiao, H., Yan, K.M. and She, G.L. (2021), "Study on the characteristics of wave propagation in functionally graded porous square plates", Geomech. Eng., 26(6), 607-615. https://doi.org/10.12989/gae.2021.26.6.607.   DOI
53 Yahiaoui, M., Tounsi, A., Fahsi, B., Bouiadjra, R.B. and Benyoucef, S. (2018), "The role of micromechanical models in the mechanical response of elastic foundation FG sandwich thick beams", Struct. Eng. Mech., 68(1), 53-66. https://doi.org/10.12989/sem.2018.68.1.053.   DOI
54 Yokoyama, T. (1996), "Vibration analysis of Timoshenko beam-columns on two-parameter elastic foundations", Comput. Struct., 61(6), 995-1007. https://doi.org/10.1016/0045-7949(96)00107-1.   DOI
55 El-Hassar, S.M., Benyoucef, S., Heireche, H. and Tounsi, A. (2016), "Thermal stability analysis of solar functionally graded plates on elastic foundation using an efficient hyperbolic shear deformation theory", Geomech. Eng., 10(3), 357-386. https://doi.org/10.12989/gae.2016.10.3.357.   DOI
56 Elmeichea, N., Abbadb, H., Mechabc, I. and Bernard, F. (2020), "Free vibration analysis of functionally graded beams with variable cross-section by the differential quadrature method based on the nonlocal theory", Struct. Eng. Mech., 75(6), 737-746. https://doi.org/10.12989/sem.2020.75.6.737.   DOI
57 Fouda, N., El-Midany, T. and Sadoun, A.M. (2017), "Bending, buckling and vibration of a functionally graded porous beam using finite elements", J. Appl. Comput. Mech., 3(4), 274-282. https://doi.org/10.22055/Jacm.2017.21924.1121.   DOI
58 Matsunaga, H. (1999), "Vibration and buckling of deep beam-columns on two-parameter elastic foundations", J. Sound Vib., 228(2), 359-376. https://doi.org/10.1006/jsvi.1999.2415.   DOI
59 Nguyen, T.K. and Nguyen, B.D. (2015), "A new higher-order shear deformation theory for static, buckling and free vibration analysis of functionally graded sandwich beams", J. Sandw. Struct. Mater., 17(6), 613-631. https://doi.org/10.1177/1099636215589237.   DOI
60 Pandey, S. and Pradyumna, S. (2021), "Thermal shock response of porous functionally graded sandwich curved beam using a new layerwise theory", Mech. Bas. Des. Struct. Mach., 1-26. https://doi.org/10.1080/15397734.2021.1888297.   DOI
61 Rezaiee-Pajand, M., Mokhtari, M. and Masoodi, A.R. (2018), "Stability and free vibration analysis of tapered sandwich columns with functionally graded core and flexible connections", CEAS Aeronaut. J., 9(4), 629-648. https://doi.org/10.1007/s13272-018-0311-6.   DOI
62 Zaitoun, M.W., Chikh, A., Tounsi, A., Sharif, A., Al-Osta, M.A., Al-Dulaijan, S.U. and Al-Zahrani, M.M. (2021), "An efficient computational model for vibration behavior of a functionally graded sandwich plate in a hygrothermal environment with viscoelastic foundation effects", Eng. Comput., 1-15. https://doi.org/10.1007/s00366-021-01498-1.   DOI
63 Wu, H.L., Yang, J. and Kitipornchai, S. (2020), "Mechanical analysis of functionally graded porous structures: A review", Int. J. Struct. Stab. Dyn., 20(13), 2041015. https://doi.org/10.1142/S0219455420410151.   DOI
64 Ramteke, P.M., Panda, S.K. and Patel, B. (2022), "Nonlinear eigenfrequency characteristics of multi-directional functionally graded porous panels", Compos. Struct., 279, 114707. https://doi.org/10.1016/j.compstruct.2021.114707.   DOI
65 Rao, N.S.V.K. (2010), Foundation Design: Theory and Practice, John Wiley & Sons.
66 Rezaiee-Pajand, M. and Masoodi, A.R. (2016), "Exact natural frequencies and buckling load of functionally graded material tapered beam-columns considering semi-rigid connections", J. Vib. Control, 24(9), 1787-1808. https://doi.org/10.1177/1077546316668932.   DOI
67 Sayyad, A.S. and Ghugal, Y.M. (2018), "An inverse hyperbolic theory for FG beams resting on Winkler-Pasternak elastic foundation", Aircraft Spacecraft Sci., 5(6), 671-689. https://doi.org/10.12989/aas.2018.5.6.671.   DOI
68 Babaei, H., Eslami, M.R. and Khorshidvand, A.R. (2020), "Thermal buckling and postbuckling responses of geometrically imperfect FG porous beams based on physical neutral plane", J. Therm. Stress., 43(1), 109-131. https://doi.org/10.1080/01495739.2019.1660600.   DOI
69 Avcar, M., Hadji, L. and Civalek, O. (2021), "Natural frequency analysis of sigmoid functionally graded sandwich beams in the framework of high order shear deformation theory", Compos. Struct., 276, 114564. https://doi.org/10.1016/j.compstruct.2021.114564.   DOI
70 Avila, A.F. (2007), "Failure mode investigation of sandwich beams with functionally graded core", Compos. Struct., 81(3), 323-330. https://doi.org/10.1016/j.compstruct.2006.08.030.   DOI
71 Bao, T. and Liu, Z. (2020), "Evaluation of Winkler model and Pasternak model for dynamic soil-structure interaction analysis of structures partially embedded in soils", Int. J. Geomech., 20(2), 04019167. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001519.   DOI
72 Bashiri, A.H., Akbas, S.D., Abdelrahman, A.A., Assie, A., Eltaher, M.A. and Mohamed, E.F. (2021), "Vibration of multilayered functionally graded deep beams under thermal load", Geomech. Eng., 24(6), 545-557. https://doi.org/10.12989/gae.2021.24.6.545.   DOI
73 Bekkaye, T.H.L., Fahsi, B., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Tounsi, A. and Al-Zahrani, M.M. (2020), "Porosity-dependent mechanical behaviors of FG plate using refined trigonometric shear deformation theory", Comput. Concrete, 26(5), 439-450. https://doi.org/10.12989/cac.2020.26.5.439.   DOI
74 Al-Furjan, M.S.H., Hatami, A., Habibi, M., Shan, L. and Tounsi, A. (2021), "On the vibrations of the imperfect sandwich higher-order disk with a lactic core using generalize differential quadrature method", Compos. Struct., 257, 113150. https://doi.org/10.1016/j.compstruct.2020.113150.   DOI
75 Jia, J. and Jia (2018), Soil Dynamics and Foundation Modeling, Springer.
76 Alimoradzadeh, M. and Akbas, S.D. (2022), "Nonlinear dynamic behavior of functionally graded beams resting on nonlinear viscoelastic foundation under moving mass in thermal environment", Struct. Eng. Mech., 81(6), 705-714. https://doi.org/10.12989/sem.2022.81.6.705.   DOI
77 Amirani, M.C., Khalili, S.M.R. and Nemati, N. (2009), "Free vibration analysis of sandwich beam with FG core using the element free Galerkin method", Compos. Struct., 90(3), 373-379. https://doi.org/10.1016/j.compstruct.2009.03.023.   DOI
78 Asadi-Ghoozhdi, H., Attarnejad, R., Masoodi, A.R. and Majlesi, A. (2022), "Seismic assessment of irregular RC frames with tall ground story incorporating nonlinear soil-structure interaction", Struct., 41, 159-172. https://doi.org/10.1016/j.istruc.2022.05.001.   DOI
79 Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.   DOI
80 Al-Furjan, M.S.H., Farrokhian, A., Keshtegar, B., Kolahchi, R. and Trung, N.T. (2021), "Dynamic stability control of viscoelastic nanocomposite piezoelectric sandwich beams resting on Kerr foundation based on exponential piezoelasticity theory", Eur. J. Mech. A. Solid., 86, 104169. https://doi.org/10.1016/j.euromechsol.2020.104169.   DOI
81 Van Vinh, P. and Tounsi, A. (2021), "The role of spatial variation of the nonlocal parameter on the free vibration of functionally graded sandwich nanoplates", Eng. Comput., 1-19. https://doi.org/10.1007/s00366-021-01475-8.   DOI
82 Venkataraman, S. and Sankar, B.V. (2003), "Elasticity solution for stresses in a sandwich beam with functionally graded core", AIAA J., 41(12), 2501-2505. https://doi.org/10.2514/2.685341T.   DOI
83 Vo, T.P., Thai, H.T., Nguyen, T.K., Inam, F. and Lee, J. (2015), "Static behaviour of functionally graded sandwich beams using a quasi-3D theory", Compos. B Eng., 68, 59-74. https://doi.org/10.1016/j.compositesb.2014.08.030.   DOI
84 Kahya, V. and Turan, M. (2018), "Vibration and stability analysis of functionally graded sandwich beams by a multi-layer finite element", Compos. B Eng., 146, 198-212. https://doi.org/10.1016/j.compositesb.2018.04.011.   DOI
85 Kerr, A.D. (1964), "Elastic and viscoelastic foundation models", J. Appl. Mech., 31(3), 491-498. https://doi.org/10.1115/1.3629667.   DOI
86 Kieback, B., Neubrand, A. and Riedel, H. (2003), "Processing techniques for functionally graded materials", Mater. Sci. Eng.: A, 362(1-2), 81-105. https://doi.org/10.1016/S0921-5093(03)00578-1.   DOI
87 Nguyen, T.K., Vo, T.P., Nguyen, B.D. and Lee, J. (2016), "An analytical solution for buckling and vibration analysis of functionally graded sandwich beams using a quasi-3D shear deformation theory", Compos. Struct., 156, 238-252. https://doi.org/10.1016/j.compstruct.2015.11.074.   DOI
88 Kilicer, S., Ozgan, K. and Daloglu, A. (2018), "Effects of soil structure interaction on behavior of reinforced concrete structures", J. Struct. Eng. Appl. Mech., 1(1), 28-33. https://doi.org/10.31462/jseam.2018.01028033.   DOI
89 Naebe, M. and Shirvanimoghaddam, K. (2016), "Functionally graded materials: A review of fabrication and properties", Appl. Mater. Today, 5, 223-245. https://doi.org/10.1016/j.apmt.2016.10.001.   DOI
90 Nguyen, T.K., Nguyen, T.T.P., Vo, T.P. and Thai, H.T. (2015), "Vibration and buckling analysis of functionally graded sandwich beams by a new higher-order shear deformation theory", Compos. B Eng., 76, 273-285. https://doi.org/10.1016/j.compositesb.2015.02.032.   DOI
91 Pasternak, P.L. (1954), On a New Method of Analysis of an Elastic Foundation by Means of Two Foundation Constants, Gosudarstvenrwe Izdatelslvo Literaturi po Stroitclstvu i Arkhitekture, Moscow. (in Russian)
92 Rabhi, M., Benrahou, K.H., Kaci, A., Houari, M.S.A., Bourada, F., Bousahla, A.A., Tounsi, A., Bedia, E.A.A., Mahmoud, S.R. and Tounsi, A. (2020), "A new innovative 3-unknowns HSDT for buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Geomech. Eng., 22(2), 119-132. https://doi.org/10.12989/gae.2020.22.2.119.   DOI
93 Ramteke, P.M., Patel, B. and Panda, S.K. (2021), "Nonlinear eigenfrequency prediction of functionally graded porous structure with different grading patterns", Wave Random. Complex. Media, 1-19. https://doi.org/10.1080/17455030.2021.2005850.   DOI
94 Ramteke, P.M., Sharma, N., Choudhary, J., Hissaria, P. and Panda, S.K. (2021), "Multidirectional grading influence on static/dynamic deflection and stress responses of porous FG panel structure: a micromechanical approach", Eng. Comput., 1-21. https://doi.org/10.1007/s00366-021-01449-w.   DOI
95 Benahmed, A., Houari, M.S.A., Benyoucef, S., Belakhdar, K. and Tounsi, A. (2017), "A novel quasi-3D hyperbolic shear deformation theory for functionally graded thick rectangular plates on elastic foundation", Geomech. Eng., 12(1), 9-34. https://doi.org/10.12989/gae.2017.12.1.009.   DOI
96 Tahir, S.I., Tounsi, A., Chikh, A., Al-Osta, M.A., Al-Dulaijan, S.U. and Al-Zahrani, M.M. (2022), "The effect of three-variable viscoelastic foundation on the wave propagation in functionally graded sandwich plates via a simple quasi-3D HSDT", Steel Compos. Struct., 42(4), 501-511. https://doi.org/10.12989/scs.2022.42.4.501.   DOI
97 Thieme, M., Wieters, K.P., Bergner, F., Scharnweber, D., Worch, H., Ndop, J., Kim, T.J. and Grill, W. (2001), "Titanium powder sintering for preparation of a porous functionally graded material destined for orthopaedic implants", J. Mater. Sci. Mater. Med., 12(3), 225-231. https://doi.org/10.1023/a:1008958914818.   DOI
98 Tossapanon, P. and Wattanasakulpong, N. (2016), "Stability and free vibration of functionally graded sandwich beams resting on two-parameter elastic foundation", Compos. Struct., 142, 215-225. https://doi.org/10.1016/j.compstruct.2016.01.085.   DOI
99 Trinh, L.C., Vo, T.P., Osofero, A.I. and Lee, J. (2016), "Fundamental frequency analysis of functionally graded sandwich beams based on the state space approach", Compos. Struct., 156, 263-275. https://doi.org/10.1016/j.compstruct.2015.11.010.   DOI
100 Rao, S.S. (2019), Vibration of Continuous Systems, John Wiley & Sons.
101 Reddy, J.N. (2003), Mechanics of Laminated Composite Plates and Shells Theory and Analysis, CRC Press.
102 AlSaid-Alwan, I.H.H.S. and Avcar, M. (2020), "Analytical solution of free vibration of FG beam utilizing different types of beam theories: A comparative study", Comput. Concrete, 26(3), 285-292. https://doi.org/10.12989/cac.2020.26.3.285.   DOI
103 Rezaiee-Pajand, M. and Masoodi, A.R. (2022), "Hygro-thermo-elastic nonlinear analysis of functionally graded porous composite thin and moderately thick shallow panels", Mech. Adv. Mater. Struct., 29(4), 594-612. https://doi.org/10.1080/15376494.2020.1780524.   DOI
104 Rezaiee-Pajand, M., Masoodi, A.R. and Mokhtari, M. (2018), "Static analysis of functionally graded non-prismatic sandwich beams", Adv. Comput. Des., 3(2), 165-190. https://doi.org/10.12989/acd.2018.3.2.165.   DOI
105 Rezaiee-Pajand, M., Rajabzadeh-Safaei, N. and Masoodi, A.R. (2020), "An efficient curved beam element for thermo-mechanical nonlinear analysis of functionally graded porous beams", Struct., 28, 1035-1049. https://doi.org/10.1016/j.istruc.2020.08.038.   DOI
106 Hadji, L. and Avcar, M. (2021), "Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theory", Adv. Nano. Res., 10(3), 281-293. https://doi.org/10.12989/anr.2021.10.3.281.   DOI
107 Hamed, M.A., Abo-bakr, R.M., Mohamed, S.A. and Eltaher, M.A. (2020), "Influence of axial load function and optimization on static stability of sandwich functionally graded beams with porous core", Eng. Comput., 36(4), 1929-1946. https://doi.org/10.1007/s00366-020-01023-w.   DOI
108 Han, C., Li, Y., Wang, Q., Wen, S., Wei, Q., Yan, C., Hao, L., Liu, J. and Shi, Y. (2018), "Continuous functionally graded porous titanium scaffolds manufactured by selective laser melting for bone implants", J Mech Behav Biomed Mater. 80, 119-127. https://doi.org/10.1016/j.jmbbm.2018.01.013.   DOI
109 Hebali, H., Chikh, A., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Hussain, M. and Tounsi, A. (2022), "Effect of the variable visco-Pasternak foundations on the bending and dynamic behaviors of FG plates using integral HSDT model", Geomech. Eng., 28(1), 49-64. https://doi.org/10.12989/gae.2022.28.1.049.   DOI
110 He, S.Y., Zhang, Y., Dai, G. and Jiang, J.Q. (2014), "Preparation of density-graded aluminum foam", Mater. Sci. Eng.: A, 618, 496-499. https://doi.org/10.1016/j.msea.2014.08.087.   DOI
111 Kitipornchai, S., Chen, D. and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Des., 116, 656-665. https://doi.org/10.1016/j.matdes.2016.12.061.   DOI
112 Kolahchi, R., Bidgoli, A.M.M. and Heydari, M.M. (2015), "Size-dependent bending analysis of FGM nano-sinusoidal plates resting on orthotropic elastic medium", Struct. Eng. Mech., 55(5), 1001-1014. https://doi.org/10.12989/sem.2015.55.5.1001.   DOI
113 Kolahchi, R., Keshtegar, B. and Trung, N.T. (2021), "Optimization of dynamic properties for laminated multiphase nanocomposite sandwich conical shell in thermal and magnetic conditions", J Sandw Struct Mater., 24(1), 643-662. https://doi.org/10.1177/10996362211020388.   DOI
114 Madenci, E. (2021), "Free vibration and static analyses of metal-ceramic FG beams via high-order variational MFEM", Steel Compos. Struct., 39(5), 493-509. https://doi.org/10.12989/scs.2021.39.5.493.   DOI
115 Saidi, H., Tounsi, A. and Bousahla, A.A. (2016), "A simple hyperbolic shear deformation theory for vibration analysis of thick functionally graded rectangular plates resting on elastic foundations", Geomech. Eng., 11(2), 289-307. https://doi.org/10.12989/gae.2016.11.2.289.   DOI