• Title/Summary/Keyword: functionalized surface

Search Result 247, Processing Time 0.028 seconds

The Variation of Response on Humidity in CNT Thin Film by Silane Binders (실란 바인더에 의한 탄소나노튜브 박막의 감습 특성 변화)

  • Kim, Seong-Jeen
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.10
    • /
    • pp.782-787
    • /
    • 2010
  • Recently the solution-based thin film technology has often been treated in the field of device fabrication owing to easy process and convenience for the development of various semiconductor devices and sensors. We deposited on glass substrate single-walled carbon nanotubes (SWNTs)/silane hybrid thin films by multiple spray-coating which is one of solution-based processes, and examined their electrical response for humidity. Generally silane binders which are often mixed in carbon nanotube (CNT) solution to adhere CNTs to substrate well form easily each own functionalized group on the surface of CNTs after they are hardened by way of the hydrolysis reaction. In this work, we investigated how silane binders (TEOS (tetraethoxy silane), MTMS (methyltrimethoxysilane) and VTMS (vinyltrimethoxysilane)) in CNT thin films make effect to their electrical response on humidity. As the result, we found that the resistance in the samples using TEOS was changed dramatically while it was almost invariant in the samples using MTMS and VTMS for increasing humidity.

Certification of Gibroblase Cell Adhesion and Spreading Mediated by Arg-Gly-Asp (RGD) Sequence on Thermo-Reversible Hydrogel

  • NA, KUN;DONG-WOON KIM;KEUN-HONG PARK
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.6
    • /
    • pp.922-927
    • /
    • 2001
  • In an effort to regulate the mammalian cell behavior in entrapment with a gel, we have functionalized hydrogels with the putative cell-binding (-Arg-Gly-Asp-)(RGD) domain. An adhesion molecule of Gly-Arg-Gly-Asp-Ser (GRGDS) peptides, a cell recognition ligand, was induced into thermo-reversible hydrogels, composed of N-isopropylacrylamide with small amounts of acrylic acid (typically 2-5 $mol\%$ in feed), as a biomimetic extracellular matrix (ECM). The GRGDS containing a p(NiPAAm-co-AAc) copolymer gel was studied in vitro for its ability to promote the spreading and viability of cells by introducing a GRGDS sequence. Hydrogel with no adhesion molecule was a poor ECM for adhesion, permiting spreading of only $3\%$ of the seeded cells for 36h. By immobilizing the peptide linkage into the hydrogel, the conjugation of RGD promoted $50\%$ of proliferation for 36h. However, the GREDS sequence, nonadhesive peptide linkage, conjugated hydrogel showed only $5\%$ of the seeded cell for the same time period. In addition, with the serum-free medium, only GRGDS peptides conjugated to hydrogel was able to promotecell spreading, while there was no cell proliferation in the hydrogel without GRGDS. Thus, the GRGDS peptide-conjugated thermo-reversible hydrogel specifically mediated the cell spreading. This result suggests that utilization of peptide sequences conjugating with the cell-adhesive motifs can enhance the degree of cell surface interaction and influence the long-term formation of ECM in vitro.

  • PDF

Investigation of the Binding Force between Protein A and Immunoglobulin G Using Dielectrophoretic(DEP) Tweezers Inside a Microfluidic Chip (미세유체 칩 내에서 유전영동 집게(Dielectrophoretic Tweezers) 를 이용한 단백질A와 면역 글로불린 G의 결합에 관한 연구)

  • Kwak, Tae Joon;Lee, Jae Woo;Yoon, Dae Sung;Lee, Sang Woo
    • Journal of Biomedical Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.123-128
    • /
    • 2013
  • The 'Dielectrophoretic Tweezers(DEP Tweezers)' can be used as a facile, economical toolkit for quantitative measurement of chemical and biological binding forces related to many biological interactions within a microfluidic device. Our experimental setup can probe the interaction between a single receptor molecule and its specific ligand. Immunoglobulin G(IgG) functionalized on polystyrene microspheres has been used to detect individual surface linked Staphylococcus protein A(SpA) molecules and to characterize the strength of the noncovalent IgG-SpA bond. It was measured and compared with the existing measurements. Measured single binding force of between Goat, Rabbit IgG and SpA were $17{\pm}7pN$, $74{\pm}16pN$. This work can be used to investigate several different ligand-receptor interactions and antigen-antibody interactions.

Influence of Amine Grafting on Carbon Dioxide Adsorption Behaviors of Activated Carbons

  • Jang, Dong-Il;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3377-3381
    • /
    • 2011
  • In this work, the amine grafting treated activated carbons were studied for carbon dioxide adsorbent. The surfaces of activated carbon were functionalized by 3-chloropropyltrimethoxysilane, which was subsequently grafted with amine compounds tris-(2-aminoethyl)amine and tri-ethylenetetramine and subjected to comparison. The surface functional groups of the amine grafted activated carbons were characterized using XPS. The textural properties of the amine grafted activated carbons were analyzed by $N_2$/77 K isotherms. Carbon dioxide adsorption behaviors of the amine grafted activated carbons were examined via the amounts of carbon dioxide adsorption at 298 K and 1.0 atm. From the results, tris-(2-aminoethyl)amine grafted activated carbons showed 43.8 $cm^3$/g of carbon dioxide adsorption while non-treated activated carbons and triethylenetetramine grafted activated carbons showed less carbon dioxide adsorption. These results were thought to be due to the presence of isolated amine groups in the amine compounds. Tris-(2-aminoethyl)amine grafted activated carbons have basic features that result in the enhancement of adsorption capacity of the carbon dioxide molecules, which have an acidic feature.

Nondestructive Damage Sensitivity for Functionalized Carbon Nanotube and Nanofiber/Epoxy Composites Using Electrical Resistance Measurement and Acoustic Emission (전기저항 측정과 음향방출을 이용한 표면 처리된 탄소 나노튜브와 나노 섬유 강화 에폭시 복합재료의 비파괴적 손상 감지능)

  • Kim, Dae-Sik;Park, Joung-Man;Kim, Tae-Wook
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.42-45
    • /
    • 2003
  • Nondestructive damage sensing and mechanical properties for acid-treated carbon nanotube (CNT) and nanofiber (CNF)/epoxy composites were investigated using electro-micromechanical technique and acoustic emission (AE). Carbon black (CB) was used to compare to CNT and CNF. The results were compared to the untreated case. The fracture of carbon fiber was detected by nondestructive acoustic emission (AE) relating to electrical resistivity under double-matrix composites test. Sensing for fiber tension was performed by electro-pullout test under uniform cyclic strain. The sensitivity for fiber damage such as fiber fracture and fiber tension was the highest for CNT/epoxy composites. Reinforcing effect of CNT obtained from apparent modulus measurement was the highest in the same content. For surface treatment case, the damage sensitivity and reinforcing effect were higher than those of the untreated case. The results obtained from sensing fiber damage were correlated with the morphological observation of nano-scale structure using FE-SEM. The information on fiber damage and matrix deformation and reinforcing effect of carbon nanocomposites could be obtained from electrical resistivity measurement as a new concept of nondestructive evaluation.

  • PDF

Detection of Influenza A Virus by Interdigitated Nanogap Devices

  • Park, Jimin;Park, Dae Keun;Lee, Cho Yeon;Kang, Aeyeon;Yun, Wan Soo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.419-419
    • /
    • 2014
  • Interdigitated nanogap device (IND) is an attractive tool for biomolecular detection due to its huge on-off signal ratio, great tolerance to the variation in biochemical environment, and relatively simple implementation processes. Here, we report on the IND-based detection of Influneza A virus by sandwich immunoassay. The INEs were fabricated by photo lithography followed by the in-house chemical lithographic technique for the narrowing the initial gap distance. The surface of the silicon oxide between the two gold electrodes was chemically modified to immobilize primary antibodies for the immuno-specific interaction with the influenza A virus antigen. After immersing the functionalized-IND into the sample solution containing the influenza A virus, the device was exposed to the secondary antibody conjugated Au nanoparticles (Au NPs). The INDs showed a huge jump in the electric conductance when the sample solution contained the influenza A virus of the concentration as low as 10 ng/mL. We hope that this IND-based sensing can be applied to the development of simple and reliable diagnostic means of influenza viruses.

  • PDF

Specific Detection of DNA Using Quantum Dots and Magnetic Beads for Large Volume Samples

  • Kim, Yeon-Seok;Kim, Byoung-Chan;Lee, Jin-Hyung;Kim, Jung-Bae;Gu, Man-Bock
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.5
    • /
    • pp.449-454
    • /
    • 2006
  • Here we present a sensitive DNA detection protocol using quantum dots (QDs) and magnetic beads (MBs) for large volume samples. In this study, QDs, conjugated with streptavidin, were used to produce fluorescent signals while magnetic beads (MBs) were used to isolate and concentrate the signals. The presence of target DNAs leads to the sandwich hybridization between the functionalized QDs, the target DNAs and the MBs. In fact, the QDs-MBs complex, which is bound using the target DNA, can be isolated and then concentrated. The binding of the QDs to the surface of the MBs was confirmed by confocal microscopy and Cd elemental analysis. It was found that the fluorescent intensity was proportional to concentration of the target DNA, while the presence of non-complementary DNA produced no significant fluorescent signal. In addition, the presence of low copies of target DNAs such as 0.5 pM in large volume samples up to 40mL was successfully detected by using a magnet-assisted concentration protocol which consequently results in the enhancement of the sensitivity more than 100-fold.

Molecular-scale Structure of Pentacene at Functionalized Electronic Interfaces

  • Seo, Soon-Joo;Peng, Guowen;Mavrikakis, Manos;Ruther, Rose;Hamers, Robert J.;Evans, Paul G.;Kang, Hee-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.299-299
    • /
    • 2011
  • A dipolar interlayer can cause dramatic changes in the device characteristics of organic field-effect transistors (OFETs) or photovoltaics. A shift in the threshold voltage, for example, has been observed in an OFET where the organic semiconductor active layer is deposited on SiO2 modified with a dipolar monolayer. Dipolar molecules can similarly be used to change the current-voltage characteristics of organic-inorganic heterojunctions. We have conducted a series of experiments in which different molecular linkages are placed between a pentacene thin film and a silicon substrate. Interface modifications with different linkages allow us to predict and examine the nature of tunneling through pentacene on modified Si surfaces with different dipole moment. The molecular-scale structure and the tunneling properties of pentacene thin films on modified Si (001) with nitrobenzene and styrene were examined using scanning tunneling spectroscopy. Electronic interfaces using organic surface dipoles can be used to control the band lineups of a semiconductor at organic/inorganic interfaces. Our results can provide insights into the charge transport characteristics of organic thin films at electronic interfaces.

  • PDF

The Dispersion Stability of Multi-Walled Carbon Nanotubes in the Presence of Poly(styrene/$\alpha-methyl$ styrene/acrylic acid) Random Terpolymer

  • Chang, Woo-Hyuck;Cheong, In-Woo;Shim, Sang-Eun;Choe, Soon-Ja
    • Macromolecular Research
    • /
    • v.14 no.5
    • /
    • pp.545-551
    • /
    • 2006
  • Aqueous dispersions of pristine and functionalized (COOH- and $NH_2$-) multi-walled, carbon nanotubes (MWNTs) were prepared by using three types of surf act ants: sodium dodecyl sulfate (SDS, anionic), PEO-PPO-PEO (Pluronic P84, non-ionic), and poly(styrene/$\alpha-methyl$ styrene/acrylic acid) random terpolymer, i.e., alkali-soluble resin (ASR). The aggregate size, $\zeta-potential$, and storage stability of the MWNT aqueous dispersions were investigated by using dynamic light scattering and the turbidity method at room temperature. The exfoliation of the MWNT aggregates was determined by a UV-visible spectrophotometer and the morphology of the surfactant-coated MWNTs was observed by transmission electron microscopy (TEM). In all cases, ASR showed better dispersion stability with the smallest aggregate size, compared with the other surfactants, because of its unique molecular structure, i.e., randomly incorporated carboxylic acid groups and planar phenyl groups that can be irreversibly and effectively adsorbed on the MWNT surface. A predominantly-exfoliated morphology of MWNTs was observed in the presence of ASR from the strong intensity of the UV-vis spectrum at 263 nm.

Biological Synthesis of Alkyne-terminated Telechelic Recombinant Protein

  • Ayyadurai, Niraikulam;Kim, So-Yeon;Lee, Sun-Gu;Nagasundarapandian, Soundrarajan;Hasneen, Aleya;Paik, Hyun-Jong;An, Seong-Soo;Oh, Eu-Gene
    • Macromolecular Research
    • /
    • v.17 no.6
    • /
    • pp.424-429
    • /
    • 2009
  • In this study, we demonstrate that the biological unnatural amino acid incorporation method can be utilized in vivo to synthesize an alkyne-terminated telechelic protein, Synthesis of terminally-functionalized polymers such as telechelic polymers is recognized to be important, since they can be employed usefully in many areas of biology and material science, such as drug delivery, colloidal dispersion, surface modification, and formation of polymer network. The introduction of alkyne groups into polymeric material is particularly interesting since the alkyne group can be a linker to combine other materials using click chemistry. To synthesize the telechelic recombinant protein, we attempted to incorporate the L-homopropargylglycine into the recombinant GroES fragment by expressing the recombinant gene encoding Met at the codons for both N- and C-terminals of the protein in the Met auxotrophic E. coli via Hpg supplementation. The Hpg incorporation rate was investigated and the incorporation was confirmed by MALDI-TOF analysis of the telcchelic recombinant protein.