The Dispersion Stability of Multi-Walled Carbon Nanotubes in the Presence of Poly(styrene/$\alpha-methyl$ styrene/acrylic acid) Random Terpolymer

  • Chang, Woo-Hyuck (Department of Applied Chemistry, Kyungpook National University) ;
  • Cheong, In-Woo (Department of Applied Chemistry, Kyungpook National University) ;
  • Shim, Sang-Eun (Department of Chemical Engineering and Institute of Clean Technology, Inha University) ;
  • Choe, Soon-Ja (Department of Chemical Engineering and Institute of Clean Technology, Inha University)
  • Published : 2006.10.31

Abstract

Aqueous dispersions of pristine and functionalized (COOH- and $NH_2$-) multi-walled, carbon nanotubes (MWNTs) were prepared by using three types of surf act ants: sodium dodecyl sulfate (SDS, anionic), PEO-PPO-PEO (Pluronic P84, non-ionic), and poly(styrene/$\alpha-methyl$ styrene/acrylic acid) random terpolymer, i.e., alkali-soluble resin (ASR). The aggregate size, $\zeta-potential$, and storage stability of the MWNT aqueous dispersions were investigated by using dynamic light scattering and the turbidity method at room temperature. The exfoliation of the MWNT aggregates was determined by a UV-visible spectrophotometer and the morphology of the surfactant-coated MWNTs was observed by transmission electron microscopy (TEM). In all cases, ASR showed better dispersion stability with the smallest aggregate size, compared with the other surfactants, because of its unique molecular structure, i.e., randomly incorporated carboxylic acid groups and planar phenyl groups that can be irreversibly and effectively adsorbed on the MWNT surface. A predominantly-exfoliated morphology of MWNTs was observed in the presence of ASR from the strong intensity of the UV-vis spectrum at 263 nm.

Keywords

References

  1. S. Iijima, Nature, 354, 56 (1991) https://doi.org/10.1038/354056a0
  2. S. Iijima and T. Ichihashi, Nature, 363, 603 (1993) https://doi.org/10.1038/363603a0
  3. N. Nakashima, Int. J. Nanosci., 4, 119 (2005) https://doi.org/10.1142/S0219581X05002985
  4. D. Tasis, N. Tagmatarchis, A. Bianco, and M. Prato, Chem. Rev., 106, 1105 (2006) https://doi.org/10.1021/cr050569o
  5. P. M. Ajayan, L. S. Schadler, C. Giannaris, and A. Rubio, Adv. Mat., 12, 750 (2000) https://doi.org/10.1002/(SICI)1521-4095(200005)12:10<750::AID-ADMA750>3.0.CO;2-6
  6. P. J. Boul, J. Liu, E. T. Mickelson, C. B. Huffman, L. M. Ericson, I. W. Chiang, K. A. Smith, D. T. Colbert, R. H. Hauge, J. L. Margrave, and R. E. Smalley, Chem. Phys. Lett., 310, 367 (1999) https://doi.org/10.1016/S0009-2614(99)00713-7
  7. G. S. Duesberg, J. Muster, V. Krstic, M. Burghard, and S. Roth, AIP Conference Proc., 442, 39 (1998)
  8. W. S. Kim, H. S. Song, B. O. Lee, K. H. Kwon, Y.-S. Lim, and M. S. Kim, Macromol. Res., 10, 253 (2002) https://doi.org/10.1007/BF03218314
  9. K. L. Lu, R. M. lago, Y. K. Chen, M. L. H. Green, P. J. F. Harris, and S. C. Tsang, Carbon, 34, 814 (1996) https://doi.org/10.1016/0008-6223(96)89470-X
  10. D. B. Mawhinney, V. Naumenko, A. Kuznetsova, J. T. Yates, J. Liu, and R. E. Smalley, Chem. Phys. Lett., 324, 213 (2000) https://doi.org/10.1016/S0009-2614(00)00526-1
  11. M. S. P. Shaffer and A. H. Windle, Adv. Mat., 11, 937 (1999) https://doi.org/10.1002/(SICI)1521-4095(199908)11:11<937::AID-ADMA937>3.0.CO;2-9
  12. H. Xia, Q. Wang, and G. Qiu, Chem. Mat., 15, 3879 (2003) https://doi.org/10.1021/cm0341890
  13. J. E. Riggs, Z. Guo, D. L. Carroll, and Y. P. Sun, J. Am. Chem. Soc., 122, 5879 (2000) https://doi.org/10.1021/ja9942282
  14. X.-L. Xie, Y.-W. Mai, and X.-P. Zhou, Mat. Sci. Eng., R: Reports, R49, 89 (2005)
  15. K. Balasubramanian and M. Burghard, Chemie in Unserer Zeit, 39, 16 (2005) https://doi.org/10.1002/ciuz.200400337
  16. F. Dalmas, L. Chazeau, C. Gauthier, K. Masenelli-Varlot, R. Dendievel, J. Y. Cavaille, and L. Forro, J. Polym. Sci.; Part B: Polym. Phys., 43, 1186 (2005) https://doi.org/10.1002/polb.20409
  17. J. H. Sung, H. S. Kim, H. J. Jin, H. J. Choi, and I. J. Chin, Macromolecules, 37, 9899 (2004) https://doi.org/10.1021/ma048355g
  18. B. Z. Tang and H. Xu, Macromolecules, 32, 2569 (1999) https://doi.org/10.1021/ma981825k
  19. M. S. P. Shaffer, X. Fan, and A. H. Windle, Carbon, 36, 1603 (1998) https://doi.org/10.1016/S0008-6223(98)00130-4
  20. J. Chen, A. M. Rao, S. Lyuksyutov, M. E. Itkis, M. A. Hamon, H. Hu, R. W. Cohn, P. C. Eklund, D. T. Colbert, R. E. Smalley, and R. C. Haddon, J. Phys. Chem. B, 105, 2525 (2001) https://doi.org/10.1021/jp002596i
  21. J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. K. Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. Rodriguez-Macias, Y. S. Shon, T. R. Lee, D. T. Colbert, and R. E. Smalley, Science, 280, 1253 (1998) https://doi.org/10.1126/science.280.5367.1253
  22. C. Gao, Y. Z. Jin, H. Kong, R. L. D. Whitby, S. F. A. Acquah, G. Y. Chen, H. Qian, A. Hartschuh, S. R. P. Silva, S. Henley, P. Fearon, H. W. Kroto, and D. R. M. Walton, J. Phys. Chem. B, 109, 11925 (2005) https://doi.org/10.1021/jp051642h
  23. K. Kamaras, M. E. Itkis, H. Hu, B. Zhao, and R. C. Haddon, Science, 301, 1501 (2003) https://doi.org/10.1126/science.1088083
  24. J. Chen, M. A. Hamon, H. Hu, Y. Chen, A. M. Rao, P. C. Eklund, and R. C. Haddon, Science, 282, 95 (1998) https://doi.org/10.1126/science.282.5386.95
  25. V. Georgakilas, N. Tagmatarchis, D. Pantarotto, A. Bianco, J. P. Briand, and M. Prato, Chem. Comm., 3050 (2002)
  26. D. Tasis, N. Tagmatarchis, V. Georgakilas, and M. Prato, Chemistry, 9, 4000 (2003) https://doi.org/10.1002/chem.200304800
  27. O. Matarredona, H. Rhoads, Z. Li, J. H. Harwell, L. Balzano, and D. E. Resasco, J. Phys. Chem. B, 107, 13357 (2003) https://doi.org/10.1021/jp0365099
  28. K. Yurekli, C. A. Mitchell, and R. Krishnamoorti, J. Am. Chem. Soc., 126, 9902 (2004) https://doi.org/10.1021/ja047451u
  29. N. Grossiord, O. Regev, J. Loos, J. Meuldijk, and C. E. Koning, Anal. Chem. A, 77, 5135 (2005) https://doi.org/10.1021/ac050358j
  30. D. Li, H. Wang, J. Zhu, X. Wang, L. Lu, and X. Yang, J. Mat. Sci. Lett., 22, 253 (2003) https://doi.org/10.1023/A:1022391926960
  31. Z. H. Wang, G. A. Luo, and S. F. Xiao, Proc. IEEE Sensors, 2, 941 (2003)
  32. J. H. Rouse, Langmuir, 21, 1055 (2005) https://doi.org/10.1021/la0481039
  33. B. J. Lee, I. W. Cheong, D. Y. Lee, and J. H. Kim, J. Appl. Polym. Sci., 79, 479 (2000) https://doi.org/10.1002/1097-4628(20010118)79:3<479::AID-APP110>3.0.CO;2-E
  34. I. W. Cheong, M. Nomura, and J. H. Kim, Macromol. Chem. Phys., 201, 2221 (2000) https://doi.org/10.1002/1521-3935(20001101)201:17<2221::AID-MACP2221>3.0.CO;2-1
  35. I. W. Cheong, M. Nomura, and J. H. Kim, ACS Symp. Series, 801, 126 (2002)
  36. I. W. Cheong, M. Nomura, and J. H. Kim, Macromol. Chem. Phys., 202, 2454 (2001) https://doi.org/10.1002/1521-3935(20010701)202:11<2454::AID-MACP2454>3.0.CO;2-M
  37. I. W. Cheong, S. H. Song, M. Nomura, and J. H. Kim, Macromol. Chem. Phys., 202, 1710 (2001) https://doi.org/10.1002/1521-3935(20010601)202:9<1710::AID-MACP1710>3.0.CO;2-D
  38. S. P. Bunker and R. P. Wool, J. Polym. Sci.; Part A: Polym. Chem., 40, 451 (2002) https://doi.org/10.1002/pola.10130
  39. P. Curran Dennis, F. Yang, and J. H. Cheong, J. Am. Chem. Soc., 124, 14993 (2002) https://doi.org/10.1021/ja028249z
  40. F. Heatley, P. A. Lovell, and T. Yamashita, Macromolecules, 34, 7636 (2001) https://doi.org/10.1021/ma0101299
  41. I. D. Rosca, F. Watari, M. Uo, and T. Akasaka, Carbon, 43, 3124 (2005) https://doi.org/10.1016/j.carbon.2005.06.019
  42. M. Yang, V. Koutsos, and M. Zaiser, J. Phys. Chem. B, 109, 10009 (2005) https://doi.org/10.1021/jp0442403
  43. H. T. Ham, Y. S. Choi, and I. J. Chung, J. Colloid Interf. Sci., 286, 216 (2005) https://doi.org/10.1016/j.jcis.2005.01.002
  44. D. Qian, E. C. Dickey, R. Andrews, and T. Rantell, Appl. Phys. Lett., 76, 2868 (2000) https://doi.org/10.1063/1.126500
  45. R. J. Chen, Y. Zhang, D. Wang, and H. Dai, J. Am. Chem. Soc., 123, 3838 (2001) https://doi.org/10.1021/ja010172b