Biological Synthesis of Alkyne-terminated Telechelic Recombinant Protein

  • Ayyadurai, Niraikulam (School of Biotechnology, Yeungnam University) ;
  • Kim, So-Yeon (Institute for Environmental Technology and Industry, Pusan National University) ;
  • Lee, Sun-Gu (Institute for Environmental Technology and Industry, Pusan National University) ;
  • Nagasundarapandian, Soundrarajan (Department of Polymer Science and Chemical Engineering, Pusan National University) ;
  • Hasneen, Aleya (Department of Polymer Science and Chemical Engineering, Pusan National University) ;
  • Paik, Hyun-Jong (Department of Polymer Science and Chemical Engineering, Pusan National University) ;
  • An, Seong-Soo (Gachon BioNano Research Institute, Kyungwon University) ;
  • Oh, Eu-Gene (Graduate School of Global Entrepreneurship, Hoseo University)
  • Published : 2009.06.25

Abstract

In this study, we demonstrate that the biological unnatural amino acid incorporation method can be utilized in vivo to synthesize an alkyne-terminated telechelic protein, Synthesis of terminally-functionalized polymers such as telechelic polymers is recognized to be important, since they can be employed usefully in many areas of biology and material science, such as drug delivery, colloidal dispersion, surface modification, and formation of polymer network. The introduction of alkyne groups into polymeric material is particularly interesting since the alkyne group can be a linker to combine other materials using click chemistry. To synthesize the telechelic recombinant protein, we attempted to incorporate the L-homopropargylglycine into the recombinant GroES fragment by expressing the recombinant gene encoding Met at the codons for both N- and C-terminals of the protein in the Met auxotrophic E. coli via Hpg supplementation. The Hpg incorporation rate was investigated and the incorporation was confirmed by MALDI-TOF analysis of the telcchelic recombinant protein.

Keywords

References

  1. J. Wang, J. Lozier, G. Johnson, S. Kirshner, D. Verthelyi, A. Pariser, E. Shores, and A. Rosenberg, Nature Biotech., 26, 901 (2008) https://doi.org/10.1038/nbt.1484
  2. S. K. Holmgren, K. M. Taylor, L. E. Bretscher, and R. T. Raines, Nature, 392, 666 (1998) https://doi.org/10.1038/33573
  3. Y. Nishi, S. Uchiyama, M. Doi, Y. Nishiuchi, T. Nakazawa, T. Ohkubo, and Y. Kobayashi, Biochemistry, 44, 6034 (2005) https://doi.org/10.1021/bi047887m
  4. T. L. Hendrickson, V. de Crecy-Lagard, and P. Schimmel, Annu. Rev. Biochem., 73, 147 (2005) https://doi.org/10.1146/annurev.biochem.73.012803.092429
  5. N. Budisa, Angew. Chem. Int. Edit., 43, 6426 (2004) https://doi.org/10.1002/anie.200300646
  6. A. J. Link, M. L. Mock, and D. A. Tirrell, Curr. Opin. Biotechnol., 14, 603 (2003) https://doi.org/10.1016/j.copbio.2003.10.011
  7. A. J. Link and D. A. Tirrell, Methods, 36, 291 (2005) https://doi.org/10.1016/j.ymeth.2005.04.005
  8. T. H. Yoo and D. A. Tirrell, Angew. Chem. Int. Ed., 46, 5340 (2007) https://doi.org/10.1002/anie.200700779
  9. T. H. Yoo, A. J. Link, and D. A. Tirrell, PNAS, 104, 13887 (2007) https://doi.org/10.1073/pnas.0701904104
  10. C. C. Liu and P. G. Schultz, Nature Biotech., 24, 1436 (2006) https://doi.org/10.1038/nbt1254
  11. N. Budisa, Angew. Chem. Int. Edit., 43, 6426 (2004) https://doi.org/10.1002/anie.200300646
  12. M. Ibba and D. Soll, Annu. Rev. Biochem., 69, 617 (2000) https://doi.org/10.1146/annurev.biochem.69.1.617
  13. K. L. Kiick, J. C. M. van Hest, and D. A. Tirrell, Angew. Chem. Int. Edit., 39, 2148 (2000) https://doi.org/10.1002/1521-3773(20000616)39:12<2148::AID-ANIE2148>3.0.CO;2-7
  14. K. L. Kiick and D. A. Tirrell, Tetrahedron, 56, 9487 (2000) https://doi.org/10.1016/S0040-4020(00)00833-4
  15. K. L. Kiick, R. Weberskirch, and D. A. Tirrell, FEBS Lett., 502, 25 (2001) https://doi.org/10.1016/S0014-5793(01)02657-6
  16. J. C. M. van Hest, K. L. Kiick, and D. A. Tirrell, J. Am. Chem. Soc., 122, 1282 (2000) https://doi.org/10.1021/ja992749j
  17. A. J. Link and D. A. Tirrell, J. Am. Chem. Soc., 125, 11164 (2003) https://doi.org/10.1021/ja036765z
  18. V. V. Rostovtsev, L. G. Green, V. V. Fokin, and K. B. Sharpless, Angew. Chem. Int. Edit. Engl., 41, 2596 (2000)
  19. J. C. van Hest, K. L. Kiick, and D. A. Tirrell, J. Am. Chem. Soc., 122, 1282 (2000) https://doi.org/10.1021/ja992749j
  20. M. L. Mock, T. Michon, J. C. M. van Hest, and D. A. Tirrell, Chembiochem., 7, 83 (2000) https://doi.org/10.1002/cbic.200500201
  21. T. J. Deming, M. J. Fournier, T. L. Mason, and D. A. Tirrell, J. Macromol. Sci. A, 34, 2143 (1997) https://doi.org/10.1080/10601329708010331
  22. G. Hild, Prog. Polym. Sci., 23, 1019 (1998) https://doi.org/10.1016/S0079-6700(97)00055-5
  23. S. H. Lee, J. S. Park, C. M. Koo, B. K. Lim, and S. O. Kim, Macromol. Res., 16, 261 (2008) https://doi.org/10.1007/BF03218862
  24. J. A. Johnson, D. R. Lewis, D. D. Diaz, M. G. Finn, J. T. Koberstein, and N. J. Turro, J. Am. Chem. Soc., 128, 6564 (2006) https://doi.org/10.1021/ja0612910
  25. W. H. Binder and R. Sachsenhofer, Macromol. Rapid Commun., 28, 15 (2007) https://doi.org/10.1002/marc.200600625
  26. H. C. Kolb, M. G. Finn, and K. B. Sharpless, Angew. Chem. Int. Ed., 40, 2004 (2001) https://doi.org/10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5
  27. J. P. Collman, N. K. Devaraj, and C. E. D. Chidsey, Langmuir, 20, 1051 (2004) https://doi.org/10.1021/la0362977
  28. J. E. Moses and A. D. Moorhouse, Chem. Soc. Rev., 36, 1249 (2007) https://doi.org/10.1039/b613014n
  29. J. Sambrook and D. W. Russel, Molecular cloning: A Laboratory manual, 213 (1989)
  30. K. S. Yi, J. Chung, K. Park, K. Kim, S. Im, C. Choi, M. Im, and U. Kim, Hybridomics, 23, 279 (2004) https://doi.org/10.1089/hyb.2004.23.279
  31. T. J. Matray and E. T. Kool, Nature, 399, 704 (1999) https://doi.org/10.1038/21453
  32. E. T. Kool, Biopolymers, 48, 3 (1998) https://doi.org/10.1002/(SICI)1097-0282(1998)48:1<3::AID-BIP2>3.0.CO;2-7
  33. J. C. Morales and E. T. Kool, Nature Struct. Biol., 5, 950 (1998) https://doi.org/10.1038/2925
  34. M. J. Lutz, J. Horlacher, and S. A. Benner, Bioorg. Med. Chem. Lett., 8, 1149 (1998) https://doi.org/10.1016/S0960-894X(98)00177-2
  35. Y. B. Kim, Y. H. Rhee, and R. W. Lenz, J. Polym., 29, 894 (1997) https://doi.org/10.1295/polymj.29.894
  36. R. W. Lenz, Y. B. Kim, and R. C. Fuller, FEMS Microbiol. Rev., 103, 207 (1992) https://doi.org/10.1111/j.1574-6968.1992.tb05839.x
  37. W. H. Park, R. W. Lenz, and S. Goodwin, Macromolecules, 31, 1480 (1998) https://doi.org/10.1021/ma9714528