DOI QR코드

DOI QR Code

Influence of Amine Grafting on Carbon Dioxide Adsorption Behaviors of Activated Carbons

  • Received : 2011.03.23
  • Accepted : 2011.07.27
  • Published : 2011.09.20

Abstract

In this work, the amine grafting treated activated carbons were studied for carbon dioxide adsorbent. The surfaces of activated carbon were functionalized by 3-chloropropyltrimethoxysilane, which was subsequently grafted with amine compounds tris-(2-aminoethyl)amine and tri-ethylenetetramine and subjected to comparison. The surface functional groups of the amine grafted activated carbons were characterized using XPS. The textural properties of the amine grafted activated carbons were analyzed by $N_2$/77 K isotherms. Carbon dioxide adsorption behaviors of the amine grafted activated carbons were examined via the amounts of carbon dioxide adsorption at 298 K and 1.0 atm. From the results, tris-(2-aminoethyl)amine grafted activated carbons showed 43.8 $cm^3$/g of carbon dioxide adsorption while non-treated activated carbons and triethylenetetramine grafted activated carbons showed less carbon dioxide adsorption. These results were thought to be due to the presence of isolated amine groups in the amine compounds. Tris-(2-aminoethyl)amine grafted activated carbons have basic features that result in the enhancement of adsorption capacity of the carbon dioxide molecules, which have an acidic feature.

Keywords

References

  1. Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of intergovernmental panel on climate change; Cambridge University press: 2007.
  2. Xu, X.; Song, C. S.; Andresen, J. M.; Miller, B. G.; Scaroni, A. W. Micropor. Mesopor. Mater. 2003, 62, 29. https://doi.org/10.1016/S1387-1811(03)00388-3
  3. Meng, L. Y.; Cho, K. S.; Park, S. J. Carbon Lett. 2010, 11, 34. https://doi.org/10.5714/CL.2010.11.1.034
  4. Aaron, D.; Tsouris, C. Separ. Sci. Technol. 2005, 40, 321. https://doi.org/10.1081/SS-200042244
  5. Kwon, T. H.; Huh, S. Bull. Korean Chem. Soc. 2010, 31, 3507. https://doi.org/10.5012/bkcs.2010.31.12.3507
  6. Ahmed, S. A. S.; El-enin, R. M. M. A.; El-Nabarawy, T. Carbon Lett. 2009, 10, 293. https://doi.org/10.5714/CL.2009.10.4.293
  7. Lee, S. W.; Daud, W. M. A. W.; Lee, M. G. J. Ind. Eng. Chem. 2010, 16, 973. https://doi.org/10.1016/j.jiec.2010.04.002
  8. Plaze, M. G.; Pevida, C.; Arenillas, A.; Rubiera, F.; Pis, J. J. Fuel 2007, 86, 2204. https://doi.org/10.1016/j.fuel.2007.06.001
  9. Zelenak, V.; Halamova, D.; Gaverova, L.; Bloch, E.; Llewellyn, P. Micropor. Mesopor, Mater. 2008, 116, 358. https://doi.org/10.1016/j.micromeso.2008.04.023
  10. Son, W. J.; Choi, J. S.; Ahn, W. S. Micropor. Mesopor. Mater. 2008, 113, 31. https://doi.org/10.1016/j.micromeso.2007.10.049
  11. Lu, C.; Bai, H.; Wu, B.; Su, F.; Hwang, J. F. Energy Fuels 2008, 22, 3050. https://doi.org/10.1021/ef8000086
  12. Jang, D. I.; Cho, K. S.; Park, S. J. J. Korean Ind. Eng. Chem. 2009, 20, 658.
  13. Kim, B. J.; Cho, K. S.; Park, S. J. J. Colloid Interface Sci. 2010, 342, 575. https://doi.org/10.1016/j.jcis.2009.10.045
  14. Somy, A.; Mehrnia, M. R.; Amrei, H. D.; Ghanizadeh, A.; Safari, M. Int. J. Greenhouses Gas Control 2009, 3, 249. https://doi.org/10.1016/j.ijggc.2008.10.003
  15. Meng, L. Y.; Cho, K. S.; Park, S. J. Carbon Lett. 2010, 10, 221.
  16. Almazan-Almazan, M. C.; Paraeds, J. I.; Perez-Mendozam, M.; Domingo-Garcia, M.; Fernandez-Morales, I.; Martinez-Alonso, A.; Lopez-Garzon, F. J. J. Phys. Chem. B 2006, 110, 11327. https://doi.org/10.1021/jp056946i
  17. Park, S. J. In Interfacial Forces and Fields: Theory and Applications; Hsu, J. P., Ed.; Dekker, New York, 1999; Chapter 9.
  18. Brunauer, S.; Emmett, P. H.; Teller, E. J. Am. Chem. Soc. 1938, 60, 309. https://doi.org/10.1021/ja01269a023
  19. Barrett, E. P.; Joyner, L. G.; Halenda, P. P. J. Am. Chem. Soc. 1951, 73, 373. https://doi.org/10.1021/ja01145a126
  20. Arenillas, A.; Smith, K. M.; Drage, T. C.; Snape, C. E. Fuel 2005, 84, 2204. https://doi.org/10.1016/j.fuel.2005.04.003
  21. Satypal, S.; Filburn, T.; Trela, J.; Strange, J. Energy Fuels 2001, 15, 250. https://doi.org/10.1021/ef0002391
  22. Innes, W. B. Anal. Chem. Soc. 1948, 70, 1405. https://doi.org/10.1021/ja01184a034
  23. Yue, M. B.; Sun, L. B.; Cao, Y.; Wang, Z. J.; Wang, Y.; Yu, Q.; Zhu, J. H. Micropor. Mesopor. Mater. 2008, 114, 74. https://doi.org/10.1016/j.micromeso.2007.12.016
  24. Plaza, M. G.; Pevida, C.; Arenillas, A.; Rubiera, F.; Pis, J. J. Fuel 2007, 86, 2204. https://doi.org/10.1016/j.fuel.2007.06.001
  25. Sayari, A.; Belmabkhout, Y. J. Am. Chem. Soc. 2010, 132, 6312. https://doi.org/10.1021/ja1013773
  26. Zhao, H.; Hu, J.; Wang, J.; Zhou, L. Liu, H. Acta. Phys. Chim. Sin. 2007, 23, 801. https://doi.org/10.1016/S1872-1508(07)60046-1
  27. Hiyoshi, N.; Yogo, K.; Yashima, T. Chem. Lett. 2004, 33, 510. https://doi.org/10.1246/cl.2004.510

Cited by

  1. capture and new development trends vol.7, pp.11, 2014, https://doi.org/10.1039/C4EE01647E
  2. storage vol.134, pp.35, 2017, https://doi.org/10.1002/app.45097
  3. Adsorption via Amine-Impregnated Activated Carbon from Oil Sands Coke vol.31, pp.2, 2017, https://doi.org/10.1021/acs.energyfuels.6b02800
  4. Sorption of carbon dioxide, methane, and nitrogen on zeolite-F: Equilibrium adsorption study vol.36, pp.3, 2017, https://doi.org/10.1002/ep.12524
  5. Carbon Dioxide Capture Using Amine Functionalized Hydrothermal Carbons from Technical Lignin pp.1877-265X, 2018, https://doi.org/10.1007/s12649-018-0281-2
  6. Effect of Activation Temperature on CO2 Capture Behaviors of Resorcinol-based Carbon Aerogels vol.35, pp.1, 2011, https://doi.org/10.5012/bkcs.2014.35.1.57