• Title/Summary/Keyword: functional rice

Search Result 712, Processing Time 0.022 seconds

Study on Monascus Strains and Characteristic for Manufacturing Red Yeast Rice with High Production of Monacolin K (Monacolin K 강화 홍국쌀 생산을 위한 균주 및 특성 연구)

  • Park, Ji-Young;Han, Sang-Ik;Seo, Woo Duck;Ra, Ji-Eun;Sim, Eun-Yeong;Nam, Min-Hee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.2
    • /
    • pp.167-173
    • /
    • 2014
  • Red yeast rice (RYR) is the product of fermented yeast by Monascus strains on rice, and has recently become a popular dietary supplement as a traditional food in Asia. RYR contains monacolin K substances known to inhibit cholesterol synthesis as efficiently as statin drugs. To determine the optimal rice cultivar for manufacturing RYR, 7 rice cultivars (Goami, Goami2, Sangjuchalbyeo, Seolgaeng, Saegyejinmi, Yeonghojinmi and Chilbo) were fermented using two Monascus strains (M. ruber KCTC6122 and KCCM60141 of M. ruber) in this study. The monacolin K content of Sangjuchalbyeo were 47.24 ppm on KCTC6122 cultures and 117.03 ppm on KCCM60141 cultures, respectively. Other cultivars, especially Goami and Goami2, which had less content of monacolin K could not seem to ferment normally because those didn't show red color. These results imply that Sangjuchalbyeo can be optimal rice cultivar as a commercial RYR which is well fermented rice and has high content of monacolin K.

Quality Characteristics of Sorbitol Added Walnut-sulgi

  • Choi, Jung-Hee;Lee, Jung-Hee;Choi, Young-Hee;Lee, Yae-Ja;Lee, Seung-Min
    • Food Quality and Culture
    • /
    • v.3 no.2
    • /
    • pp.59-63
    • /
    • 2009
  • As one of study efforts to develop a food product that can satisfy the taste of modern people and increase the usage of the popular local product of walnut in the region of Chunan, the current study developed a no sugar added functional walnut-sulgi. The walnut-sulgi was manufactured by adding walnut powder into typical sulgi rice cake. While manufacturing the walnut-sulgi rice cake, the health beneficial sugar alcohol ingredient of sorbitol was added instead of commonly used sugar to specialize the walnut-sulgi as a functional rice cake. As the result of such effort, a soft and moist walnut-sulgi was produced. The color of the newly developed walnut-sulgi is white and has a pleasing taste, and its consumer acceptability was higher than the sugar added walnut-sulgi by showing much soft sweetness and textural properties. Considering the facts that sorbitol has a lower glycemic index (GI) than sugar and the content of unsaturated fatty acids that are insufficient in rice cake could be increased, the newly developed sorbitol added walnut-sulgi is thought to be an appropriate functional rice cake that can attractively appeal to obesity and diabetes concerning modern people.

A Gene Functional Study of Rice Using Ac/Ds Insertional Mutant Population

  • Kim, So-Young;Kim, Chang-Kug;Kang, Min;Ji, Seung-Uk;Yoon, Ung-Han;Kim, Yong-Hwan;Lee, Gang-Seob
    • Plant Breeding and Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.313-320
    • /
    • 2018
  • Rice is the staple food of more than 50% of the world population. Cultivated rice has the AA genome (diploid, 2n = 24) and small genome size of only 430 megabase (haploid genome). As the sequencing of rice genome was completed by the International Rice Genome Sequencing Project (IRGSP), many researchers in the world have been working to explore the gene function on rice genome. Insertional mutagenesis has been a powerful strategy for assessing gene function. In maize, well characterized transposable elements have traditionally been used to clone genes for which only phenotypic information is available. In rice endogenous mobile elements such as MITE and Tos have been used to generate gene-tagged populations. To date T-DNA and maize transposable element systems have been utilized as main insertional mutagens in rice. The Ac/Ds system offers the advantage of generating new mutants by secondary transposition from a single tagged gene. To enhance the efficiency of gene detection, advanced gene-tagging systems (i.e. activation, gene or enhancer trap) have been employed for functional genomic studies in rice. Internationally, there have been many projects to develop large scales of insertional mutagenized populations and databases of insertion sites has been established. Ultimate goals of these projects are to supply genetic materials and informations essential for functional analysis of rice genes and for breeding using agronomically important genes. In this report, we summarize the current status of Ac/Ds-mediated gene tagging systems that has been conducted by collaborative works in Korea.

A New Rice Cultivar "Jogwang" with RSV Resistance and Short Growth Duration (벼줄무늬잎마름병 저항성 단기성 벼 신품종 "조광")

  • Lee, Jong-Hee;Kang, Jong-Rae;Park, Dong-Soo;Yeo, Un-Sang;Kwak, Do-Yeon;Shin, Mun-Sik;Song, You-Chun;Ha, Woon-Goo;Cho, Jun-Hyeon;Kim, Chun-Song;Jeon, Myeong-Gi;Lee, Gi-Yun;Yi, Gi-Hwan;Nam, Min-Hee;Ku, Yeon-Chung;Oh, Byeong-Geun;Kim, Myeong-Ki;Yang, Sae-Jun;Kim, Jae-Kyu
    • Korean Journal of Breeding Science
    • /
    • v.41 no.2
    • /
    • pp.163-167
    • /
    • 2009
  • Jogwang is a new early maturing japonica rice developed in 2007 from a cross between Milyang187 and YR21113-B-B at the Department of Functional Crop Science, NICS, RDA. This cultivar is very suitable to the rice-cash crop double cropping system. Heading date of Jogwang is 2 days earlier than Keumobyeo under the late transplanting cultivation on July 10 at the Yeongnam plain. The tolerance level of this variety to leaf discoloration at seedling stage is very similar to Keumobyeo. It showed slightly lower viviparous germination and premature heading. This cultivar showed resistant reactions to leaf blast and rice stripe virus disease but susceptible to bacterial blight disease and major insect pests. The ratio of milling and head rice recovery of Jogwang is 76.5% and 64.5%, respectively. The milled kernels are translucent with non glutinous endosperm. This cultivar has 7.3% protein and 18.5% amylose content. In local adaptability test, showed that the milled rice yield of Jogwang is $4.90\;MT\;ha^{-1}$. This cultivar is suitable for planting in the plain paddy fields of Honam and Yeonnam regions in Korea.

Mapping of Quantitative Trait Loci Associated with Viviparous Germination in Rice

  • Lee, Seung-Yeob;Ahn, Jeong-Ho;Cha, Young-Soon;Yun, Doh-Won;Lee, Myung-Cheol;Eun, Moo-Young
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.6
    • /
    • pp.565-570
    • /
    • 2006
  • The viviparous germination (VG) with lodging caused the yield reduction and quality deterioration in rice. We carried out the evaluation of VG tolerance (on the 40th day after heading) and mapping QTLs associated with VG tolerance using the recombinant inbred lines (M/G RILs) from a cross between Milyang 23 (japonica/indica) and Gihobyeo (japonica). The VG rates of Milyang 23 and Gihobyeo were 0.0 and 7.0%, respectively. The averaged VG rate of 162 M/G RILs was 7.7%, and their range was from 0.0 to 50.9%. Of the 162 RILs, 144 lines were tolerant less than 10%, and 18 lines were susceptible more than 10%. Using the M/G RIL Map, three QTLs associated with the viviparous trait were detected on chromosome 2 (qVG 2-1 and qVG 2-2) and 8 (qVG 8). qVG 2-1 was linked to RM 32D and RZ 166, and had LOD score of 2.97. qVG 2-2 was tightly linked to E13M59.119-Pl and E13M59.M003-P2, and showed higher LOD score of 3.41. qVG 8 was linked to RM33 and TCT116, and had LOD score of 2.67. The total phenotypic variance explained by the three QTLs was about 24.4% of the total variance in the population. The detection of new QTLs associated with VG tolerance will provide important informations for the seed dormancy, low temperature germination, or comparative genetics.

Changes of Milling Quality of Rice Varieties According to the Transplanting Time and Good Resources with High Milling Quality in Yeongnam Plain Paddy (영남평야지에서 벼 이앙시기에 따른 도정특성 변화와 도정특성 유망 유전자원 탐색)

  • Kim, Choon-Song;Lee, Jong-Hee;Kwak, Do-Yeon;Jeon, Myeong-Gi;Kang, Jong-Rae;Yeo, Un-Sang;Shin, Mun-Sik;Oh, Byeong-Geun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.spc
    • /
    • pp.1-8
    • /
    • 2008
  • We carried out this study to analyze changes of rice grain milling properties according to the transplanting time and to identify genetic resources suitable for improving milling quality of rice in paddy field of Yeongnam area. We analyzed grain filling and milling quality of 30 rice varieties. In late transplanting (June 20), heading date was delayed for 6 days, compared to normal transplanting(June 5). The grain filling ratio (GFR), perfect kernel ratio of milled rice (PKR), and head rice recovery (HRR) were improved in late transplanting. There was no significant difference in head rice yield of two transplanting time, even though the milled rice yield in late transplanting was significantly smaller than that in normal transplanting because of the reduction of spikelet numbers per panicle. The uniformity of brown rice grain measured by selection sieve norm was improve in late transplanting. There was no significant difference of milling loss ratio between normal and late transplanting but there was a trend for a increase of milling necessary time in late transplanting. Thus, our result suggest that optimum transplanting time is June 10 to 15 to improve grain filling and milling quality and produce high head rice yield in the southern paddy plain of Yeongnam region. We selected promising 9 rice varieties which are Nampyeongbyeo, Ilmibyeo, Chucheongbyeo, Dongjinbyeo, Hopyeongbyeo, Malguemi, Chilbo, Hinohikari, and Cheongmu having high percentage of ripened grain and milling quality as genetic resources to improve milling characteristics of rice varieties. Chucheongbyeo, Dongjinbyeo, and Malguemi showed the highest grain filling ratio and Nampyeongbyeo had the highest perfect kernel ratio. Nampyeongbyeo and Ilmibyeo showed the highest head rice yield with more than 500 kg/10a.

A New Early Maturing Rice Cultivar "Junamjosaeng" with Multiple Disease Resistance and High Grain Quality Traits (고품질 복합내병성 조생종 벼 신품종 "주남조생")

  • Lee, Jong-Hee;Yeo, Un-Sang;Lee, Jeom-Sik;Kang, Jong-Rae;Kwak, Do-Yeon;Park, Dong Soo;Cho, Jun-Hyeon;Song, You-Chun;Park, No-Bong;Kim, Choon-Song;Yi, Gi-Hwan;Lim, Sang-Jong;Oh, Byeong-Geun;Shin, Mun-Sik
    • Korean Journal of Breeding Science
    • /
    • v.41 no.2
    • /
    • pp.149-153
    • /
    • 2009
  • Junamjosaeng is a new japonica rice cultivar developed in 2006 from a cross between Milyang165*3 and Koshihikari at the Department of Functional Crop Science, NICS, RDA. This cultivar is suitable for the double cropping system (i. e., before and after the cash crop). Heading date of Junamjosaeng is 6 days earlier than Keumobyeo under the late transplanting cultivation on July 10. It has a high grain fertility under cold conditions and low premature heading. One of the distinguishing characteristics of this variety is its resistance to major diseases like leaf blast, bacterial blight races ($K_1$, $K_2$, $K_3$) and rice stripe virus disease. However, it showed susceptibility to major insect pests. Milled rice kernels are translucent with non glutinous endosperm and have 6.7% protein and 19.8% amylose contents. Milling recovery of head rice is 75.7%. The palatability of cooked rice is better than Keumobyeo. The milled rice yield of Junamjosaeng in local adaptability tests after harvest of the cash crop was $4.43\;tons\;ha^{-1}$. This cultivar is suitable for planting in the plain paddy fields of Honam and Yeonnam regions in Korea.

Changes in Fatty Acid Composition of Grain after Milling (곡류 도정에 따른 지방산 조성 변화 연구)

  • Cho, Young-Sook;Kim, Yu-Na;Kim, Su-Yeonk;Kim, Jung-Bong;Kim, Heon-Woong;Kim, Se-Na;Kim, So-Young;Park, Hong-Ju;Kim, Jae-Hyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.4
    • /
    • pp.409-413
    • /
    • 2011
  • BACKGROUND: Cereals, especially rice is the staple food of oriental nations and because it is very important for Korean food, to determine the extent of nutrient losses due to milling, we analyzed the fatty acid using by GC-FID(Gas Chromatography-Flame Ionization Detector). Experimented rice cereals were rice, glutinous rice, Heuinchalssalbori, Seodunchalbori, Saessalbori, Keunalbori No.1, barnyard millet produced in Korea. METHODS AND RESULTS: After milling, the contents of fatty acids in the rice, glutinous rice, Heuinchalssalbori, and Seodunchalbori, Keunalbori No.1 rather decreased, but in the Saessalbori, and barnyard mille increased. Particularly, fatty acid content of the rice decreased from 24.8 mg/g to 6.4 mg/g, glutinous rice decreased from 29.4 mg/g to 11.7 mg/g after milling. There were also significant changes in the compositions of fatty acid among samples. Stearic acid ($C_{18:0}$) increased from 5% to 15%, but oleic acid ($C_{18:1}$) and linoleic acid ($C_{18:2}$) decreased in the rice after milling. CONCLUSION(s):In the brown rice, 11 different types of fatty acids were detected, and its highest content was found in grains. However, milled grain was observed only seven fatty acids in the case of rice. This result insisted that a portion of the lipid layer was significantly lost during the milling operation in rice.

Mechanical Properties and Degradability of Bio-degradable Agricultural Transplanting Pot Containing Rice By-product (벼 부산물을 함유한 생분해성 육묘폿트의 기계적 성질 및 분해 특성)

  • Han, Sang-Ik;Kang, Hang-Won;Byun, Dae-Woo;Jang, Ki-Chang;Seo, Woo-Duck;Ra, Ji-Eun;Kim, Jun-Young;Choi, Kyung-Jin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.56 no.1
    • /
    • pp.44-49
    • /
    • 2011
  • The bio-degradable transplanting pot containing rice by-product (rice-hull and rice-bran) were developed, and tested their ability for agronomic use. Rice by-products were crosslinked with biodegradable aliphatic ally aromatic copolyesters or urea resin for making transplanting pot. Mechanical properties and degradability of these pots were measured and compared to those of the Jiffy pot (commercially used bio-degradable pot). Mechanical strength was higher than that of Jippy pot, and bio-degradability was excellent under the actual field condition. In addition, the pot could be degraded within 3 months under the ground. Our result indicated bio-degradable pot containing rice by-products has a great potential for such agronomic use.

Bio-degradable Characteristics and Mechanical Properties of Mulching Films Containing Rice By-product (벼 부산물을 함유한 생분해성 필름의 기계적 성질 및 분해 특성)

  • Han, Sang-Ik;Kang, Hang-Won;Byun, Dae-Woo;Jang, Ki-Chang;Seo, Woo-Duck;Ra, Ji-Eun;Kim, Jun-Young;Choi, Kyung-Jin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.56 no.2
    • /
    • pp.113-118
    • /
    • 2011
  • This study was aimed to develop blend films by rice by-product (rice-hull and rice-bran) and bio-degradable materials. The rice by-product was firstly prepared from the pulverizing for making fine powder. Bio-degradable materials could be prepared by melting at high temperature. The mixture of the fine powder of rice by-product and melted bio-degradable materials was then blended and cast into films. The obtained films were investigated on their morphology, secondary structures and properties by using SEM, ICP and ASTM, respectively. Mechanical properties and degradability of these films were measured and compared to those of the PE films. Mechanical strength of bio-films was higher than that of PE films, however elongation ratio showed lower percent than that of PE film. In addition, bio-film could be degraded into fragments within 3 months under the field condition of normal upland crop cultivation. Bio-degradable mulching film indicated great potential for agronomic use as a new source of bio-degradable material.