• Title/Summary/Keyword: functional mapping

Search Result 427, Processing Time 0.024 seconds

Functional-Magnetic Resonance Imaging and Transcranial Magnetic Stimulation in a Case of Schizencephaly (뇌열 1예의 기능적 자기공명영상과 경두부 자기자극)

  • 변우목;한봉수;이재교;장용민
    • Investigative Magnetic Resonance Imaging
    • /
    • v.4 no.1
    • /
    • pp.14-19
    • /
    • 2000
  • Purpose : This study was to present the functional brain mapping of both functional magnetic resonance imaging(MRI) and transcranial magnetic stimulation(TMS) in a case of schizencephaly. Materials and methods : A 28-year-old man, who had left hemiplegia and schizencephaly in right cerebral hemisphere, was exacted with both functional MRI and TMS. Motor function of left hand was decreased whereas right hand was within normal limit. For functional MRI, gradient-echo echo planar imaging($TR/TE/{\alpha}$=1.2 sec/90 msec/90) was employed. The paradigm of motor task consisted of repetitive self-paseo hand flexion-extension exercises with 1-2 Hz periods. An image set of 10 slices was repetitively acquired with 15 seconds alternating periods of task performance and rest and total 6 cycles (three ON periods and three OFF periods) were performed. In brain mapping, TMS was performed with the round magnetic stimulator (mean diameter; 90mm). The magnetic stimulation was done with 80% of maximal output. The latency and amplitude of motor evoked potential(MEP)s were obtained from both abductor pollicis brevis(APB) muscles. Results : Functional MRI revealed activation of the left primary motor cortex with flexion-extension exercises of healthy right hand. On the other hand, the left primary motor cortex, left supplementary motor cortex, and left promoter areas were activated with flexion-extension exercises of left hand. In TMS, magnetic evoked potentials were induced in no areas of right cerebral hemisphere, but in 5 areas of left corebral hemisphere from both abductor pollicis brevis. Latency, amplitude, and contour of response of the magnetic evoked potentials in both hands were similar. Conclusion : Functional MRI and TMS in a patient with schizencephaly were successfully used to localize cortical motor function. Ipsilateral motor pathway is thought to be secondary to reinforcement of the corticospinal tract of the ipsilateral motor cortex.

  • PDF

Development of Buildng LCCO2 Assessment System through Data Mapping Technology. (데이터 맵핑기술을 이용한 건축물 LCCO2 평가시스템 개발)

  • Keum, Won-Seok;Tae, Sung-Ho;Roh, Seung-Jun;Bang, Jun-Sik
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.151-152
    • /
    • 2012
  • Recently, there are growing interests in building LCCO2 Assessment to reduce carbon emissions. However, existing methods of assessment system include inefficiency in the process of CO2 calculation requiring considerable data input. Therefore, the purpose of this study is to develop an efficient building assessment system appropriate to material production in construction stage. To that end, quantity input technology was limited to data mapping. Also quantity calculation based on work breakdown structure and item codes consisted of hierarchical structure that is based on facet classification were analyzed. As a result, connectivity links of quantity calculation and CO2 functional units through item codes for data mapping, and assessment system including calculation and database parts were developed.

  • PDF

APPROXIMATING FIXED POINTS FOR GENERALIZED 𝛼-NONEXPANSIVE MAPPING IN CAT(0) SPACE VIA NEW ITERATIVE ALGORITHM

  • Samir Dashputre;Rakesh Tiwari;Jaynendra Shrivas
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.1
    • /
    • pp.69-81
    • /
    • 2024
  • In this paper, we provide certain fixed point results for a generalized 𝛼-nonexpansive mapping, as well as a new iterative algorithm called SRJ-iteration for approximating the fixed point of this class of mappings in the setting of CAT(0) spaces. Furthermore, we establish strong and ∆-convergence theorem for generalized 𝛼-nonexpansive mapping in CAT(0) space. Finally, we present a numerical example to illustrate our main result and then display the efficiency of the proposed algorithm compared to different iterative algorithms in the literature. Our results obtained in this paper improve, extend and unify results of Abbas et al. [10], Thakur et al. [22] and Piri et al. [19].

QUADRATIC MAPPINGS ASSOCIATED WITH INNER PRODUCT SPACES

  • Lee, Sung Jin
    • Korean Journal of Mathematics
    • /
    • v.19 no.1
    • /
    • pp.77-85
    • /
    • 2011
  • In [7], Th.M. Rassias proved that the norm defined over a real vector space V is induced by an inner product if and only if for a fixed integer $n{\geq}2$ $${\sum_{i=1}^{n}}\left\|x_i-{\frac{1}{n}}{\sum_{j=1}^{n}}x_j \right\|^2={\sum_{i=1}^{n}}{\parallel}x_i{\parallel}^2-n\left\|{\frac{1}{n}}{\sum_{i=1}^{n}}x_i \right\|^2$$ holds for all $x_1$, ${\cdots}$, $x_n{\in}V$. Let V, W be real vector spaces. It is shown that if an even mapping $f:V{\rightarrow}W$ satisfies $$(0.1)\;{\sum_{i=1}^{2n}f}\(x_i-{\frac{1}{2n}}{\sum_{j=1}^{2n}}x_j\)={\sum_{i=1}^{2n}}f(x_i)-2nf\({\frac{1}{2n}}{\sum_{i=1}^{2n}}x_i\)$$ for all $x_1$, ${\cdots}$, $x_{2n}{\in}V$, then the even mapping $f:V{\rightarrow}W$ is quadratic. Furthermore, we prove the generalized Hyers-Ulam stability of the quadratic functional equation (0.1) in Banach spaces.

POSITIVE LINEAR OPERATORS IN C*-ALGEBRAS

  • Park, Choon-Kil;An, Jong-Su
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.5
    • /
    • pp.1031-1040
    • /
    • 2009
  • It is shown that every almost positive linear mapping h : $\mathcal{A}\rightarrow\mathcal{B}$ of a Banach *-algebra $\mathcal{A}$ to a Banach *-algebra $\mathcal{B}$ is a positive linear operator when h(rx) = rh(x) (r > 1) holds for all $x\in\mathcal{A}$, and that every almost linear mapping h : $\mathcal{A}\rightarrow\mathcal{B}$ of a unital C*-algebra $\mathcal{A}$ to a unital C*-algebra $\mathcal{B}$ is a positive linear operator when h($2^nu*y$) = h($2^nu$)*h(y) holds for all unitaries $u\in \mathcal{A}$, all $y \in \mathcal{A}$, and all n = 0, 1, 2, ..., by using the Hyers-Ulam-Rassias stability of functional equations. Under a more weak condition than the condition as given above, we prove that every almost linear mapping h : $\mathcal{A}\rightarrow\mathcal{B}$ of a unital C*-algebra $\mathcal{A}$ A to a unital C*-algebra $\mathcal{B}$ is a positive linear operator. It is applied to investigate states, center states and center-valued traces.

THE STABILITY OF LINEAR MAPPINGS IN BANACH MODULES ASSOCIATED WITH A GENERALIZED JENSEN MAPPING

  • Lee, Sung Jin
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.2
    • /
    • pp.287-301
    • /
    • 2011
  • Let X and Y be vector spaces. It is shown that a mapping $f\;:\;X{\rightarrow}Y$ satisfies the functional equation $$(\ddag)\hspace{50}dk\;f\left(\frac{\sum_{j=1}^{dk}x_j}{dk}\right)=\displaystyle\sum_{j=1}^{dk}f(x_j)$$ if and only if the mapping $f$ : X ${\rightarrow}$ Y is Cauchy additive, and prove the Cauchy-Rassias stability of the functional equation ($\ddag$) in Banach modules over a unital $C^{\ast}$-algebra. Let $\mathcal{A}$ and $\mathcal{B}$ be unital $C^{\ast}$-algebras. As an application, we show that every almost homomorphism $h\;:\;\mathcal{A}{\rightarrow}\mathcal{B}$ of $\mathcal{A}$ into $\mathcal{B}$ is a homomorphism when $h((k-1)^nuy)=h((k-1)^nu)h(y)$ for all unitaries $u{\in}\mathcal{A}$, all $y{\in}\mathcal{A}$, and $n$ = 0,1,2,$\cdots$. Moreover, we prove the Cauchy-Rassias stability of homomorphisms in $C^{\ast}$-algebras.

A Method of Deriving an Intensity Mapping Function by Using The Variational Technique (변분법을 이용한 명암도 변환 함수 획득 방법)

  • Kim, Jun-Hyung;Noh, Chang-Kyun;Ko, Sung-Jea
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.5
    • /
    • pp.10-15
    • /
    • 2011
  • Histogram equalization is an effective method to enhance the contrast of the image. However, it can result in unwanted artifacts such as excessive contrast enhancement and noise amplification. These artifacts can be reduced by modifying an intensity mapping function which is generated by histogram equalization. In this paper, we present a variational approach to the modification of the intensity mapping function. We define a functional whose minimization produces a modified intensity mapping function. Experimental results show that the intensity mapping function obtained by the proposed method can enhance the contrast of the image without visual artifacts.

Logic synthesis algorithm of multiple-output functions using the functional decomposition method for the TLU-type FPGA (기능적 분해방법을 이용한 TLU형 FPGA의 다출력 함수 로직 합성 알고리즘 설계)

  • 손승원;장종수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.11
    • /
    • pp.2365-2374
    • /
    • 1997
  • This paper describes two algorithms for technology mapping of multiple output functions into interesting and pupular FPGAs(Field Programmable Gate Array) that use look-yp table memories. For improvement of technology mapping for FPGA, we use the functional decompoition method for multiple output functions. Two algorithms are proposed. The one is the Roth-Karpalgorithm extended for multiple output functions. The other is the efficient algorithm which looks for common decomposition functions through the decomposition procedure. The cost function is used to minimize the number of CLBs and nets and to improve performance of the network. Finally we compare our new algorithm with previous logic design technique. Experimental resutls show sigificant reduction in the number of CLBs and nets.

  • PDF

Poisson Banach Modules over a Poisson C*-Algebr

  • Park, Choon-Kil
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.4
    • /
    • pp.529-543
    • /
    • 2008
  • It is shown that every almost linear mapping h : $A{\rightarrow}B$ of a unital PoissonC*-algebra A to a unital Poisson C*-algebra B is a Poisson C*-algebra homomorph when $h(2^nuy)\;=\;h(2^nu)h(y)$ or $h(3^nuy)\;=\;h(3^nu)h(y)$ for all $y\;\in\;A$, all unitary elements $u\;\in\;A$ and n = 0, 1, 2,$\codts$, and that every almost linear almost multiplicative mapping h : $A{\rightarrow}B$ is a Poisson C*-algebra homomorphism when h(2x) = 2h(x) or h(3x) = 3h(x for all $x\;\in\;A$. Here the numbers 2, 3 depend on the functional equations given in the almost linear mappings or in the almost linear almost multiplicative mappings. We prove the Cauchy-Rassias stability of Poisson C*-algebra homomorphisms in unital Poisson C*-algebras, and of homomorphisms in Poisson Banach modules over a unital Poisson C*-algebra.