• 제목/요약/키워드: functional load

검색결과 291건 처리시간 0.024초

Buckling characteristics and static studies of multilayered magneto-electro-elastic plate

  • Kiran, M.C.;Kattimani, S.C.
    • Structural Engineering and Mechanics
    • /
    • 제64권6권
    • /
    • pp.751-763
    • /
    • 2017
  • This article deals with the buckling behaviour of multilayered magneto-electro-elastic (MEE) plate subjected to uniaxial and biaxial compressive (in-plane) loads. The constitutive equations of MEE material are used to derive a finite element (FE) formulation involving the coupling between electric, magnetic and elastic fields. The displacement field corresponding to first order shear deformation theory (FSDT) has been employed. The in-plane stress distribution within the MEE plate existing due to the enacted force is considered to be equivalent to the applied in-plane compressive load in the pre-buckling range. The same stress distribution is used to derive the potential energy functional. The non-dimensional critical buckling load is accomplished from the solution of allied linear eigenvalue problem. Influence of stacking sequence, span to thickness ratio, aspect ratio, load factor and boundary condition on critical buckling load and their corresponding mode shape is investigated. In addition, static deflection of MEE plate under the sinusoidal and the uniformly distributed load has been studied for different stacking sequences and boundary conditions.

구조공법별 환경부하 산출·비교분석에 관한 연구 (철근콘크리트구조와 철골구조를 중심으로) (Comparison of Environmental Load per Constructional Methods (Focus on Reinforced Concrete Structures and Steel-Frame Structures))

  • 문준호;이현주;정영철;김태희;김광희
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2011년도 춘계 학술논문 발표대회 1부
    • /
    • pp.193-195
    • /
    • 2011
  • Nowadays, climatic environment change has become a major issue in the world. This causes major emissions of carbon dioxide industries steel industry, thermal power industry, cement industry is essential in the reduction of carbon dioxide, which is based on total carbon dioxide emissions account for most of the construction industry in an effort to minimize the environmental load is needed. accordingly, through case studies, It can be induce the selection to minimize environmental load by comparing the output of quantitative energy consumption and carbon dioxide emissions per constructional methods. As a result of this study, RC Structure was less environmental load than SC structure.

  • PDF

상지 부하 감소를 위한 기능성 상의 프로토타입 디자인 (Design of a Prototype Jacket for Upper Extremity Load Reduction)

  • 박선희;이예진
    • 한국의류학회지
    • /
    • 제46권4호
    • /
    • pp.613-623
    • /
    • 2022
  • This study developed a functional prototype jacket designed to reduce loads on the upper extremities of workers performing repetitive motions in the same posture for extended periods of time. Dynamic taping lines were applied to the upper extremities, and three dimensional (3D) supporters were inserted in the abdomen and back waist areas corresponding to the core muscles. Clothing pressure on the upper-extremity dynamic taping lines was set to two levels (proto P1 and proto P2), and the 3D supporters were designed in three types (proto FW, proto FW/BW, proto FW/BW/BBX). According to the subjective pressure perceived on each part of the upper extremities, the level proto P1 pressure was preferred. The proto FW/BW/BBX 3D supporter was rated as excellent, and the perceived pressure was ranked as satisfactory. The prototype jacket performed upper-extremity load reduction when the upper-extremity clothing-pressure level was set to 1.8 kPa, 2.1 kPa, and 2.4 kPa on the upper arm, forearm, and wrist regions, respectively, and when 3D supporters were installed in the abdomen and back of the waist with the addition of a back band.

부하를 고려한 태양열온수시스템의 일간 집열효율에 대한 실험적 분석 (An Experimental Study on Daily Efficiency of Solar Collector with Heating Loads of Solar Water Heating System)

  • 이경호;주홍진;윤응상;곽희열
    • 한국태양에너지학회 논문집
    • /
    • 제32권2호
    • /
    • pp.19-27
    • /
    • 2012
  • This paper describes an experimental study on efficiency of solar collector in solar water heating system connected to hourly water heating load. In general, the functional form of solar efficiency is expressed as a function of fluid temperature entering solar collector, ambient temperature, and solar irradiance. When energy saving from solar heating of water heating system is analyzed on along-term basis such as one year with given solar irradiance data, simplified analysis is more convenient han detailed system simulation for quick assessment. However, the functional form of the efficiency is not convenient for approximately simplified energy analysis because the inlet temperature can be obtained through a detailed system simulation. In the study, solar collector efficiency is obtained with various daily water heating load sand daily solar irradiance using experimental tests. The study also considers large residential buildings such as apartment buildings for application of solar water heating systems. From test results, it is found that daily solar collector efficiency is proportional to daily water heating loads and daily solar irradiance. The data obtained from the study can be utilized to find a functional relation between daily solar irradiance and daily heating load in stead of collector inlet temperature for application of solar collector efficiency to long-term approximated energy analysis of solar heating system.

만성 발바닥 근막염 환자에게 물리치료와 코르티코스테로이드 주사가 미치는 효과 비교 (Comparison of the Effects of Physiotherapy vs. Corticosteroid Injection in Patients with Chronic Plantar Fasciitis)

  • 추연기;김현수
    • 대한통합의학회지
    • /
    • 제9권4호
    • /
    • pp.237-249
    • /
    • 2021
  • Purpose : This study was to compare the effect changes after physical therapy (extracorporeal shock wave therapy + high-load strengthening exercise) or corticosteroid injection in patients diagnosed with chronic plantar fasciitis. Methods : A total of 40 patients were randomly assigned to each group of 20. According to the intervention method, "Group 1. Physiotherapy" was performed for 12 weeks, and "Group 2. Corticosteroid injection" was performed only once. As a pre-intervention test, plantar fascia thickness, pain intensity I, II (What is the most painful moment of the day?, How painful is the first step in the morning?), and functional performance were measured. To compare the effects of each group, the tests 3, 6, and 12 weeks after were also performed using the same measurement method. Also, after 12 weeks, patient satisfaction was also compared. Results : There was no significant difference between the groups in the change in the thickness of the plantar fascia during all periods. However, pain intensity I, II was significantly lower in Group 1 than in Group 2 at only 12 weeks and functional performance was also significantly increased in Group 1 compared to Group 2 at only 12 weeks. Also, there was no significant difference between groups in patient satisfaction. Conclusion : The physiotherapy protocol, which consisted of extracorporeal shock wave therapy and high-load strengthening exercise, showed excellent results, especially after 12 weeks, compared to corticosteroid injection. It is recommended as a more effective treatment method as it is possible to safely return to daily life by reducing pain and improving functional performance.

3차원 나노구조화 기술을 이용한 고성능 기능성 세라믹 연구개발 동향 (Recent Advances in High-performance Functional Ceramics using 3D Nanostructuring Techniques)

  • 안창의;박준용;전석우
    • 세라미스트
    • /
    • 제22권3호
    • /
    • pp.230-242
    • /
    • 2019
  • Functional ceramics are widely utilized in a variety of application fields such as structural materials, sensors, energy devices, purification filter and etc due to their high strength, stability and chemical activity. With the breakthrough development of nanotechnology, many researchers have studied new types of nanomaterials including nanoparticle, nanorod, nanowire and nanoplate to realize high-performance ceramics. Especially several groups have focused on the 3D nanostructured ceramics because of their large surface area, efficient load transfer, ultra-fast ion diffusion and superior electrical (or thermal) conductivity. In this review, we introduce the reported fabrication strategies of the 3D nanostructured and functional ceramics, also summarized the 3D nanostructured ceramic based high-performance applications containing photocatalysts, structural materials, energy harvesting and storage devices.

Immediate placement and functional loading of implants on canine with fixed partial denture for a patient having canine protected occlusion: a case report

  • Hong, Jun-Won;Ahn, Seung-Geun;Leem, Dae-Ho;Seo, Jae-Min
    • The Journal of Advanced Prosthodontics
    • /
    • 제4권1호
    • /
    • pp.52-56
    • /
    • 2012
  • Conventional implant protocols required a load-free healing period of three to six months between placement and functional loading of the implants. Many efforts have been made to minimize the duration of treatment time. Several literatures have documented immediate function with provisional or definitive prosthesis within a week of the placement in response to these demands. In addition, immediate implant placement has advantages such as shortened treatment time and preservation of soft tissue architectures. This article presents immediate implant placement into fresh extraction sockets followed by functional immediate loading with provisional prosthesis on canine and premolars for a patient having canine protected occlusion.

허용하중집합 개념을 이용한 기계/구조 시스템의 강건 설계 (Robust Design of Structural and Mechanical Systems using Concept of Allowable Load Set)

  • 곽병만
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.333-338
    • /
    • 2007
  • The concept of "Allowable Load Set (ALS)" introduced by the author allows an easy understanding of load and strength characteristics of a structure in relation to its integrity under uncertainties. Two criteria of safety are introduced: A relative safety index denotes the distance to the boundary of the ALS and a normalized safety index is a distance in terms of functional value. They have been utilized in several examples, including multi-body mechanical systems such as a biomechanical system. Both formulations amount to robust designs in the sense that designs most insensitive to uncertainties are obtained in the context of newly defined safety indices, without using any input probability information.

  • PDF

Numerical Evaluations of the Effect of Feature Maps on Content-Adaptive Finite Element Mesh Generation

  • Lee, W.H.;Kim, T.S.;Cho, M.H.;Lee, S.Y.
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권1호
    • /
    • pp.8-16
    • /
    • 2007
  • Finite element analysis (FEA) is an effective means for the analysis of bioelectromagnetism. It has been successfully applied to various problems over conventional methods such as boundary element analysis and finite difference analysis. However, its utilization has been limited due to the overwhelming computational load despite of its analytical power. We have previously developed a novel mesh generation scheme that produces FE meshes that are content-adaptive to given MR images. MRI content-adaptive FE meshes (cMeshes) represent the electrically conducting domain more effectively with far less number of nodes and elements, thus lessen the computational load. In general, the cMesh generation is affected by the quality of feature maps derived from MRI. In this study, we have tested various feature maps created based on the improved differential geometry measures for more effective cMesh head models. As performance indices, correlation coefficient (CC), root mean squared error (RMSE), relative error (RE), and the quality of cMesh triangle elements are used. The results show that there is a significant variation according to the characteristics of specific feature maps on cMesh generation, and offer additional choices of feature maps to yield more effective and efficient generation of cMeshes. We believe that cMeshes with specific and improved feature map generation schemes should be useful in the FEA of bioelectromagnetic problems.

Axial strengthening of RC columns by direct fastening of steel plates

  • Shan, Z.W.;Su, R.K.L.
    • Structural Engineering and Mechanics
    • /
    • 제77권6호
    • /
    • pp.705-720
    • /
    • 2021
  • Reinforced concrete (RC) columns are the primary type of vertical support used in building structures that sustain vertical loads. However, their strength may be insufficient due to fire, earthquake or volatile environments. The load demand may be increased due to new functional usages of the structure. The deformability of concrete columns can be greatly reduced under high axial load conditions. In response, a novel steel encasement that distinguishes from the traditional steel jacketing that is assembled by welding or bolt is developed. This novel strengthening method features easy installation and quick strengthening because direct fastening is used to connect the four steel plates surrounding the column. This new connection method is usually used to quickly and stably connect two steel components by driving high strength fastener into the steel components. The connections together with the steel plates behave like transverse reinforcement, which can provide passive confinement to the concrete. The confined column along with the steel plates resist the axial load. By this way, the axial load capacity and deformability of the column can be enhanced. Eight columns are tested to examine the reliability and effectiveness of the proposed method. The effects of the vertical spacing between adjacent connections, thickness of the steel plate and number of fasteners in each connection are studied to identify the critical parameters which affect the load bearing performance and deformation behavior. Lastly, a theoretical model is proposed for predicting the axial load capacity of the strengthened RC columns.