• Title/Summary/Keyword: functional compounds

Search Result 1,180, Processing Time 0.036 seconds

Simultaneous qualitative and quantitative analysis of morroniside and hederacoside D in extract mixture of Cornus officinalis and Stauntonia hexaphylla leaves to improve benign prostatic hyperplasia by HPLC-UV

  • Dan, Gao;Cho, Chong Woon;Vinh, Le Ba;Kim, Jin Hyeok;Cho, Kyoung Won;Kim, Young Ho;Kang, Jong Seong
    • Analytical Science and Technology
    • /
    • v.33 no.5
    • /
    • pp.224-231
    • /
    • 2020
  • With the improvement in the standard of living and extension of life expectancy, the incidence of prostate diseases has increased yearly, thus becoming a serious disease affecting the health of men. The extract mixture of Cornus officinalis and Stauntonia hexaphylla leaves is a developed functional food formula to improve prostate health. This study developed a simultaneous analytical method of bioactive compounds for quantifying the mixture of Cornus officinalis and S. hexaphylla leaves using high-pressure liquid chromatography-ultraviolet (HPLC-UV). HPLC analytical condition was performed on a Hector C18 column with a mobile phase of 0.1 % formic acid in water (A) and 0.1 % formic acid in acetonitrile (B) under the following gradient conditions: 0-50 min, 12 %-40 % (B) at a flow rate of 1.0 mL/min. Meanwhile, this method was validated properly and successfully used to quantify the bioactive components of morroniside and hederacoside D in 20 sample batches and assess the quality of different ages and seasons of S. hexaphylla leaves. The result showed that the content of morroniside in the extract mixture of Cornus officinalis and S. hexaphylla leaves ranged from 1.38-1.62 mg/g, and the hederacoside D ranged from 28.42-32.02 mg/g, suggesting that this novel analytical method will be suitable for the quality control of the extract mixture to improve benign prostatic hyperplasia.

S-Adenosylmethionine (SAM) Regulates Antibiotic Biosynthesis in Streptomyces spp. in a Mode Independent of Its Role as a Methyl Donor

  • Zhao Xin-Qing;Jin Ying-Yu;Kwon Hyung-Jin;Yang Young-Yell;Suh Joo-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.927-932
    • /
    • 2006
  • S-Adenosylmethionine (SAM) is a ubiquitous biomolecule serving mainly as a methyl donor. Our recent studies revealed that SAM controls antibiotic production in Streptomyces. In this study, the functional mode of SAM was studied in S. coelicolor and S. antibioticus ATCC11891, employing S-adenosylhomocysteine (SAH), a methylation reaction product of SAM. Actinorhodin biosynthesis did not require SAM as a methyl donor, whereas SAH enhanced the actinorhodin biosynthesis up to the level comparable to SAM, and the most effective concentration of SAH was higher than that of SAM. In the case of oleandomycin that requires SAM for its biosynthesis, both SAM and SAH at the concentration as low as 100 mM showed comparable efficacy in enhancing the production; SAM at 1 mM concentration additionally stimulated to give a 5-fold enhancement of oleandomycin production. In vitro autophosphorylation of protein kinase AfsK was found to be activated by both SAM and SAH, as well as other structurally related compounds. Our studies demonstrate that SAM regulates antibiotic biosynthesis in a mode independent of its role as a methyl donor and suggest that SAM acts directly as an intracellular signaling molecule for Streptomyces.

The inhibition of chitin synthesis in Spodoptera litura by new insecticides of benzoylphenyl urea, DBI-1015 and DBI-3204 (담배거세미나방(Spodoptera litura)에서 benzoylphenyl urea계의 신규살충제 DBI-1015 및 DBI-3204의 키틴합성 저해 효과)

  • Song, Cheol;Shin, Wook-Kyun;Cho, Kwang-Yun
    • The Korean Journal of Pesticide Science
    • /
    • v.4 no.2
    • /
    • pp.63-68
    • /
    • 2000
  • This study was conducted to investigate insecticidal mechanisms of the new insecticides DBI-1015 and DBI-3204 with label compounds of chitin precursors, [$^{14}C$] N-acetylglucosamine and [$^{14}C$] UDP-N-acetylglucosamine in Spodoptera litura. The concentrations of the insecticides for incorporation of chitin precursors into chitin were founded to be functional relationship. The result of in vivo test, $I_{50}$ (ppm) of the DBI-1015, DBI-3024 and diflubenzuron to [$^{14}C$] N-acetylglucosamine were 0.57, 0.89 and 0.26 ppm respectively, and to [$^{14}C$] UDP-N-acetylglucosaminen were 0.99, 0.53 and 0.45 ppm respectively. in vitro test of DBI-1015, DBI-3024 and diflubenzuron by integument fragments, the incorporation rate in the cuticle were low, however, $40{\sim}60%$ inhibitions were observed at $2{\mu}M$ when compared to the untreated control.

  • PDF

Antioxidant activity and anti-inflammatory activity of ethanol extract and fractions of Doenjang in LPS-stimulated RAW 264.7 macrophages

  • Kwak, Chung Shil;Son, Dahee;Chung, Young-Shin;Kwon, Young Hye
    • Nutrition Research and Practice
    • /
    • v.9 no.6
    • /
    • pp.569-578
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Fermentation can increase functional compounds in fermented soybean products, thereby improving antioxidant and/or anti-inflammatory activities. We investigated the changes in the contents of phenolics and isoflavones, antioxidant activity and anti-inflammatory activity of Doenjang during fermentation and aging. MATERIALS/METHODS: Doenjang was made by inoculating Aspergillus oryzae and Bacillus licheniformis in soybeans, fermenting and aging for 1, 3, 6, 8, and 12 months (D1, D3, D6, D8, and D12). Doenjang was extracted using ethanol, and sequentially fractioned by hexane, dichloromethane (DM), ethylacetate (EA), n-butanol, and water. The contents of total phenolics, flavonoids and isoflavones, 2,2-diphenyl-1 picryl hydrazyl (DPPH) radical scavenging activity, and ferric reducing antioxidant power (FRAP) were measured. Anti-inflammatory effects in terms of nitric oxide (NO), prostaglandin (PG) E2 and pro-inflammatory cytokine production and inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 expressions were also measured using LPS-treated RAW 264.7 macrophages. RESULTS: Total phenolic and flavonoid contents showed a gradual increase during fermentation and 6 months of aging and were sustained thereafter. DPPH radical scavenging activity and FRAP were increased by fermentation. FRAP was further increased by aging, but DPPH radical scavenging activity was not. Total isoflavone and glycoside contents decreased during fermentation and the aging process, while aglycone content and its proportion increased up to 3 or 6 months of aging and then showed a slow decrease. DM and EA fractions of Doenjang showed much higher total phenolic and flavonoid contents, and DPPH radical scavenging activity than the others. At $100{\mu}g/mL$, DM and EA fractions of D12 showed strongly suppressed NO production to 55.6% and 52.5% of control, respectively, and PGE2 production to 25.0% and 28.3% of control with inhibition of iNOS or COX-2 protein expression in macrophages. CONCLUSIONS: Twelve month-aged Doenjang has potent antioxidant and anti-inflammatory activities with high levels of phenolics and isoflavone aglycones, and can be used as a beneficial food for human health.

Anti-Inflammatory Effect of Ethyl Acetate Fraction Isolated from Undaria pinnatifida on Lipopolysaccharides-Stimulated RAW 264.7 Cells (LPS로 유도된 RAW 264.7 대식세포에 대한 미역(Undaria pinnatifida) Ethyl Acetate 분획물의 항염증 효과)

  • Choi, Min-Woo;Kim, Jae-Il
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.46 no.4
    • /
    • pp.384-392
    • /
    • 2013
  • An ethanolic extract of Undaria pinnatifida was fractionated using several solvents. Of the fractions, the ethyl acetate fraction had the greatest inhibitory effect on lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW 264.7 macrophage cells. Using this fraction (U. pinnatifida ethyl acetate extract, UPE), we investigated the molecular mechanism underlying its inhibitory effect on LPS-stimulated RAW 264.7 cells. Pretreatment of the cells with up to $100{\mu}g/mL$ UPE significantly inhibited NO production and inducible nitric oxide synthase (iNOS) expression, in a dose-dependent manner. Similarly, UPE treatment markedly reduced the production of pro-inflammatory cytokines, such as interleukin (IL)-1, IL-6 and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), while it strongly suppressed the nuclear translocation of nuclear factor-kappa B (NF-${\kappa}B$) by preventing proteolytic degradation of inhibitor of nuclear factor ${\kappa}B$ $(I{\kappa}B)-{\alpha}$. Moreover, UPE treatment significantly reduced the phosphorylation of phosphatidylinositol 3-kinase (PI3K)/Akt and mitogen-activated protein kinase (MAPK) in LPS-stimulated cells. These results indicate that UPE contains anti-inflammatory compounds and suggest that it might be used as a functional food material that assists in prevention of inflammatory diseases.

Crystal Structure and Functional Characterization of a Cytochrome P450 (BaCYP106A2) from Bacillus sp. PAMC 23377

  • Kim, Ki-Hwa;Lee, Chang Woo;Dangi, Bikash;Park, Sun-Ha;Park, Hyun;Oh, Tae-Jin;Lee, Jun Hyuck
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.8
    • /
    • pp.1472-1482
    • /
    • 2017
  • Bacterial cytochrome P450 (CYP) steroid hydroxylases are effectively useful in the pharmaceutical industry for introducing hydroxyl groups to a wide range of steroids. We found a putative CYP steroid hydroxylase (BaCYP106A2) from the bacterium Bacillus sp. PAMC 23377 isolated from Kara Sea of the Arctic Ocean, showing 94% sequence similarity with BmCYP106A2 (Bacillus megaterium ATCC 13368). In this study, soluble BaCYP106A2 was overexpressed to evaluate its substrate-binding activity. The substrate affinity ($K_d$ value) to 4-androstenedione was $387{\pm}37{\mu}M$. Moreover, the crystal structure of BaCYP106A2 was determined at $2.7{\AA}$ resolution. Structural analysis suggested that the ${\alpha}8-{\alpha}9$ loop region of BaCYP106A2 is intrinsically mobile and might be important for initial ligand binding. The hydroxyl activity of BaCYP106A2 was identified using in vitro enzyme assays. Its activity was confirmed with two kinds of steroid substrates, 4-androstenedione and nandrolone, using chromatography and mass spectrometry methods. The main products were mono-hydroxylated compounds with high conversion yields. This is the second study on the structure of CYP106A steroid hydroxylases, and should contribute new insight into the interactions of bacterial CYP106A with steroid substrates, providing baseline data for studying the CYP106A steroid hydroxylase from the structural and enzymatic perspectives.

Identification of 2-methylbutyric Acid as a Nematicidal Metabolite, and Biocontrol and Biofertilization Potentials of Bacillus pumilus L1

  • Lee, Yong-Seong;Cho, Jeong-Yong;Moon, Jae-Hak;Kim, Kil-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.4
    • /
    • pp.401-408
    • /
    • 2016
  • The present study described the isolation of 2-methylbutyric acid (2-MBA) produced from Bacillus pumilus L1, to subsequently investigate its nematicidal activity for the control of the root-knot nematode. The results showed that 2-MBA could be purified by chromatographic techniques and was identified using nuclear magnetic resonance and liquid chromatography-mass spectrometry. Crude extract and partially purified compounds had a significant effect on the inhibition of egg hatchability and second-stage juvenile (J2) mortality. A dose-dependent effect of 2-MBA was observed for J2 mortality and egg hatchability. Egg hatchability was 69.2%, 59.9%, 32.7%, and 0.0% at 125, 250, 500, and $1000{\mu}g\;mL^{-1}$ of 2-MBA after 4 d of incubation, respectively. Meanwhile, J2 mortality was in the range of 24.4%-100.0% after 2 d of incubation, depending on the concentrations of 2-MBA used. A pot experiment also demonstrated that treatment of B. pumilus L1 culture caused a significant reduction in the number of galls, egg masses, and J2 population than that of the tap water (TW) control. However, as the B. pumilus L1 culture concentration was decreased, the efficacy of nematode control by treatment of B. pumilus L1 culture was reduced compared to that of TW. B. pumilus L1 inoculation at different concentrations also promoted cucumber plant growth. Therefore, our study demonstrated the potential of 2-MBA from B. pumilus L1 as a biocontrol agent against the root-knot nematode and a plant growth promoter for cucumber plants.

The improvement effect of anti-inflammation of Aronia extract that fermented by Lactic acid bacteria isolated from the fermented seafoods

  • Lim, Jeong-Muk;Choi, Ui-Lim;Lee, Jeong-Ho;Moon, Kwang Hyun;Kim, Dae Geun;Jeong, Kyung Ok;Im, So Yeon;Oh, Byung-Taek
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.111-111
    • /
    • 2018
  • Aronia (black chokeberry), a species of berries is source to a very large number of bioactive compounds like polyphenols, flavonoids, anthocyanins, and tannins in comparison to any other species. Owing to its antioxidant, anti-carcinogenic, anti-aging and anti-inflammatory properties. Fermentation- a bioconversion process exploiting the biological metabolic reaction of micro-organisms, has several benefits like improving the efficacy and safety of physiologically active substances, generation of new functional material, improving the adsorption rate and many others. Antigens like pathogens, food, pollen etc., generate a protective immune response in body tissues, and the process be referred to as inflammation. However, this when excessive results in a condition referred to as refractory inflammatory disease, whose incidence is increasing in the recent times, especially amongst children. The current study intended to assess the anti-oxidant activity, presence of polyphenols and anti-inflammatory efficacy of Aronia extract fermented by Lactic acid bacteria isolated from fermented sea foods. Aronia fruits collected from Sunchang, Chonbuk were lyophilized for fermentation. So as to maximise the efficacy of the fermented Aronia extract, the quantitative effects of lactic acid bacteria species, composition of extraction solution, influence of temperature and time on antioxidant activity and total polyphenol contents were investigated using an experimental design. Anti-inflammatory activity was evaluated on NO and cytokine ($TNF-{\alpha}$, IL-6) production in LPS activated Raw 264.7 cells. Results indicated that antioxidant effect and total polyphenol contents were best improved in extract of Aronia fermented by P. pentosaceus. In addition, NO and cytokine ($TNF-{\alpha}$, IL-6) levels were decreased significantly after fermentation. Thus, it was found that the anti-inflammatory activity of Aronia greatly increased after fermentation process using P. pentosaceus.

  • PDF

Sensory Characteristics of Granular Tea and the Components of Mulberry Fruit Extracts by Different Extraction Process (오디의 추출 공정에 따른 성분 변화 및 분말 과립차의 관능 특성)

  • Ryu, Il-Hwan;Kwon, Tae-Oh
    • Korean Journal of Medicinal Crop Science
    • /
    • v.20 no.5
    • /
    • pp.331-338
    • /
    • 2012
  • In the present work, mulberry fruit extracts by four extraction processes, namely wet pressing extraction (WPE), hot-water extraction (HWE), enzymatic hydrolysis (EH), and lactic-acid bacteria fermentation (LBF) by Lactobacillus plantarum TO-2100, were analyzed for nutrients and functional compounds. The sugar contents of extracts by WPE, HWE, EH, and LBF were 12.0, 10.9, 14.5, and 14.3 brix, respectively, and the extraction yields by EH and LBF were 1.65 and 1.50 times higher than those by WPE. Among the organic acids, tartaric acid and malic acid contents were the highest in the extracts by WPE. Acetic acid was best extracted by LBF, and citric acid was best extracted by EH. Lactic acid was detected only in LBF. The extracts by EH showed the highest contents of all vitamins with an exception that the extracts by LBF showed the highest contents of the folic acid, vitamin B12, and vitamin C. We also noted that vitamin B group was not detected in the extracts by LBF. The extracts by EH showed the highest contents of all the amino acids, whereas LBF showed the lowest. Polyphenol contents of extracts by EH and LBF were 3.05 and 2.51 times more than those by WPE respectively. Anthocyanin contents were 7.66, 7.14 times higher for EH and LBF compare to WPE. We manufactured mulberry fruit granular teas with different compositions and tested them for their sensory characteristics. We found that 15% mulberry fruit extracts by enzymatic hydrolysis and 85% dextrin composition gave the most satisfactory result.

α-Glucosidase Inhibitory Activity of the Ethanol Extract of Peanut (Arachis hypogaea L.) Skin (땅콩 속껍질 에탄올 추출물의 알파-글루코시데이즈 억제활성)

  • Ha, Tae Joung;Lee, Myoung Hee;Oh, Eunyoung;Kim, Jung In;Song, Seok Bo;Kwak, Doyeon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.28 no.1
    • /
    • pp.21-28
    • /
    • 2020
  • Background: Owing to its high efficiency in lipid and protein production, peanut (Arachis hypogaea L.) is considered one of most important crops world-wide. The kernels of peanuts are undoubtedly the most important product this plant, whereas the skin is almost completely neglected in nutraceutical terms. However, peanut skin contains potentially health-promoting phenolics and dietary fiber, and there is considerable potential for commercial exploitation. In this study, we evaluated the α-glucosidase inhibitory activity of an extract of peanut skin (PS). Methods and Results: The α-glucosidase inhibitory effects of 80% ethanol extracts of peanut (A. hypogaea L. 'Sinpalkwang') skin were evaluated and found to have a half-maximal inhibitory concentration (IC50) value of 1.2 ㎍/㎖. Progress curves for enzyme reactions were recorded spectrophotometrically, and the inhibition kinetics revealed time-dependent inhibition with enzyme isomerization. Furthermore, using ultra-high performance liquid chromatography combined with quadrupole-orbitrap mass spectrometry, we identified 26 compounds in the peanut skin extract, namely, catechin, epicatechin, and 24 proanthocyanidins. Conclusions: The results suggest that peanut skin can be utilized as an effective source of α-glucosidase inhibition in functional foods and nutraceuticals.