Browse > Article

S-Adenosylmethionine (SAM) Regulates Antibiotic Biosynthesis in Streptomyces spp. in a Mode Independent of Its Role as a Methyl Donor  

Zhao Xin-Qing (Institute of Bioscience & Biotechnology and Department of Biological Science, Myong Ji University)
Jin Ying-Yu (Institute of Bioscience & Biotechnology and Department of Biological Science, Myong Ji University)
Kwon Hyung-Jin (Institute of Bioscience & Biotechnology and Department of Biological Science, Myong Ji University)
Yang Young-Yell (Institute of Bioscience & Biotechnology and Department of Biological Science, Myong Ji University)
Suh Joo-Won (Institute of Bioscience & Biotechnology and Department of Biological Science, Myong Ji University)
Publication Information
Journal of Microbiology and Biotechnology / v.16, no.6, 2006 , pp. 927-932 More about this Journal
Abstract
S-Adenosylmethionine (SAM) is a ubiquitous biomolecule serving mainly as a methyl donor. Our recent studies revealed that SAM controls antibiotic production in Streptomyces. In this study, the functional mode of SAM was studied in S. coelicolor and S. antibioticus ATCC11891, employing S-adenosylhomocysteine (SAH), a methylation reaction product of SAM. Actinorhodin biosynthesis did not require SAM as a methyl donor, whereas SAH enhanced the actinorhodin biosynthesis up to the level comparable to SAM, and the most effective concentration of SAH was higher than that of SAM. In the case of oleandomycin that requires SAM for its biosynthesis, both SAM and SAH at the concentration as low as 100 mM showed comparable efficacy in enhancing the production; SAM at 1 mM concentration additionally stimulated to give a 5-fold enhancement of oleandomycin production. In vitro autophosphorylation of protein kinase AfsK was found to be activated by both SAM and SAH, as well as other structurally related compounds. Our studies demonstrate that SAM regulates antibiotic biosynthesis in a mode independent of its role as a methyl donor and suggest that SAM acts directly as an intracellular signaling molecule for Streptomyces.
Keywords
Actinorhodin; autophosphorylation; oleandomycin; protein kinase; S-adenosylhomocysteine; S-adenosylmethionine; Streptomyces coelicolor A3(2); Streptomyces antibioticus ATCC11891;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Gaisser, S., R. Lill, G. Wirtz, F. Grolle, J. Staunton, and P. F. Leadlay. 2001. New erythromycin derivatives from Saccharopolyspora erythraea using sugar O-methyltransferases from the spinosyn biosynthetic gene cluster. Mol. Microbiol. 41: 1223-1231   DOI   ScienceOn
2 Hilti, N., R. Graub, M. Jorg, P. Arnold, A. M. Schweingruber, and M. E. Schweingruberr. 2000. Gene sam1 encoding adenosylmethionine synthase: Effects of its expression in the fission yeast Schizosaccharomyces pombe. Yeast 16: 1-10   DOI   ScienceOn
3 Jo, Y. Y., J. Liu, Y. Y. Jin, Y. Y. Yang, and J. W. Suh. 2005. Isolation and characterization of kasugamycin biosynthetic genes from Sreptomyces kasugaensis KACC 20262. J. Microbiol. Biotechnol. 15: 491-496   과학기술학회마을
4 OH, S. H. and K. F. Chater. 1997. Denaturation of circular or linear DNA facilitates targeted integrative transformation of Streptomyces coelicolor A3(2): Possible relevance to other organisms. J. Bacteriol. 179: 122-127   DOI
5 Rodriguez, L., D. Rodriguez, C. Olano, A. F. Brana, C. Mendez, and J. A. Salas. 2001. Functional analysis of OleY $_L$-oleandrosyl 3-O-methyltransferase of the oleandomycin biosynthetic pathway in Streptomyces antibioticus. J. Bacteriol. 183: 5358-5363   DOI
6 Sekurova, O. N., T. Brautaset, H. Sletta, S. E. F. Borgos, O. M. Jakobsen, T. E. Ellingsen, A. R. Strom, S. Valla, and S. B. Zotchev. 2004. In vivo analysis of the regulatory genes in the nystatin biosynthesis gene cluster of Streptomyces noursei ATCC 11455 reveals their differential control over antibiotic biosynthesis. J. Bacteriol. 186: 1345-1354   DOI
7 Umeyama, T., P. C. Lee, and S. Horinouchi. 2002. Protein serine/threonine kinases in signal transduction for secondary metabolism and morphogenesis in Streptomyces. Appl. Microbiol. Biotechnol. 59: 419-425   DOI
8 Umeyama, T. and S. Horinouchi. 2001. Autophosphorylation of a bacterial serine/threonine kinase, AfsK, is inhibited by KbpA, an AfsK-binding protein. J. Bacteriol. 183: 5506-5512   DOI   ScienceOn
9 Wei, Y. H. and E. B. Newman. 2002. Studies on the role of the metK gene product of Escherichia coli K-12. Mol. Microbiol. 43: 1651-1656   DOI   ScienceOn
10 Yocum, R. R., J. B. Perrkins, C. L. Howitt, and J. Pero. 1996. Cloning and characterization of the metE gene encoding S-adenosylmethionine synthetase from Bacillus subtilis. J. Bacteriol. 178: 4604-4610   DOI
11 Kim, C. Y., H. J. Park, Y. J. Yoon, H. Y. Kang, and E. S. Kim. 2004. Stimulation of actinorhodin production by Streptomyces lividans with a chromosomally integrated antibiotic regulatory gene of afsR2. J. Microbiol. Biotechnol. 14: 1089-1092   과학기술학회마을
12 Park, H. S., S. K. Shin, Y. Y. Yang, H. J. Kwon, and J. W. Suh. 2005. Accumulation of S-adenosylmethionine induced oligopeptide transporters including BldK to regulate differentiation events in Streptomyces coelicolor M145. FEMS Microbiol. Lett. 249: 199-206   DOI   ScienceOn
13 Newman, E. B., L. I. Budman, E. C. Chan, R. C. Greene, R. T. Lin, C. L. Woldringh, and R. D'Ari. 1998. Lack of S-adenosylmethionine results in a cell division defect in Escherichia coli. J. Bacteriol. 180: 3614-3619
14 Rhee, K. H. 2002. Inhibition of DNA topoisomerase I by cyclo ($_L$-prolyl-$_L$-phenylalanyl) isolated from Streptomyces sp. AMLK-335. J. Microbiol. Biotechnol. 12: 1013-1016   과학기술학회마을
15 Ryu, Y. G., W. Jin, J. Y. Kim, J. Y. Kim, S. H. Lee, and K. J. Lee. 2004. Stringent factor regulates antibiotics production and morphological differentiation of Streptomyces clavuligerus. J. Microbiol. Biotechnol. 14: 1170-1175
16 Fontecave, M., M. Atta, and E. Mulliez. 2004. Sadenosylmethionine: Nothing goes to waste. Trends. Biochem. Sci. 29: 243-249   DOI   ScienceOn
17 Rhee, K. H. 2003. Purification and identification of an antifungal agent from Streptomyces sp. KH-614 antagonistic to rice blast fungus, Pyricularia oryzae. J. Microbiol. Biotechnol. 13: 984-988
18 Kim, D. J., J. H. Huh, Y. Y. Yang, C. M. Kang, I. H. Lee, C. G. Hyun, S. K. Hong, and J. W. Suh. 2003. Accumulation of S-adenosyl-L-methionine enhances production of actinorhodin but inhibits sporulation in Streptomyces lividans TK23. J. Bacteriol. 185: 592-600   DOI
19 Chiang, P. K., R. K. Gordon, J. Tal, G. C. Zeng, B. P. Doctor, K. Pardhasaradhi, and P. P. McCann. 1996. S-Adenosylmethionine and methylation. FASEB J. 10: 471-480   DOI
20 Shelly, C. Lu. 2000. S-Adenosylmethionine. Int. J. Biochem. Cell Biol. 32: 391-395   DOI   ScienceOn
21 Okamoto, S., A. Lezhava, T. Hosaka, Y. Okamoto-Hosoya, and K. Ochi. 2003. Enhanced expression of S-adenosylmethionine synthetase causes overproduction of actinorhodin in Streptomyces coelicolor A3(2). J. Bacteriol. 185: 601-609   DOI
22 Demain, A. L. 1998. Microbial natural products: Alive and well in 1998. Nat. Biotechnol. 16: 3-4   DOI   ScienceOn
23 Lee, P. C., T. Umeyama, and S. Horinouchi. 2002. afsS is a target of AfsR, a transcriptional factor with ATPase activity that globally controls secondary metabolism in Streptomyces coelicolor A3(2). Mol. Microbiol. 43: 1413-1430   DOI   ScienceOn
24 Shen, B., C. Li, and M. C. Tarczynski. 2002. High free-methionine and decreased lignin content result from a mutation in the Arabidopsis S-adenosyl-$_L$-methionine synthetase 3 gene. Plant J. 29: 371-380   DOI   ScienceOn
25 Umeyama, T., P. C. Lee, K. Ueda, and S. Horinouchi. 1999. An AfsK/AfsR system involved in the response of aerial mycelium formation to glucose in Streptomyces griseus. Microbiology 145: 2281-2292   DOI
26 Vilches, C., C. Mendez, C. Hardisson, and J. A. Salas. 1990. Biosynthesis of oleandomycin by Streptomyces antibioticus: Influence of nutritional conditions and development of resistance. J. Gen. Microbiol. 136: 1447-1454   DOI   ScienceOn
27 Kieser, T., M. J. Bibb, M. J. Butter, K. F. Chater, and D. A. Hopwood. 2000. Practical Streptomyces Genetics. The John Innes Foundation, Norwich, England
28 Zhao, X. Q., K. R. Kim, L. W. Sang, S. H. Kang, Y. Y. Yang, and J. W. Suh. 2005. Genetic organization of a 50-kb gene cluster from Streptomyces kanamyceticus for kanamycin biosynthesis and characterization of kanamycin acetyltransferase, 2005. J. Microbiol. Biotechnol. 15: 346-353   과학기술학회마을
29 Cai, J. X., W. M. Sun, J. J. Hwang, S. C. Stain, and S. C. Lu. 1996. Changes in S-adenosylmethionine synthetase in human liver cancer: Molecular characterization and significance. Hepatology 24: 1090-1097   DOI