• Title/Summary/Keyword: functional compounds

Search Result 1,180, Processing Time 0.03 seconds

Comparison of the Nutritional and Functional Compounds in Naked Oats (Avena sativa L.) Cultivated in Different Regions (재배지역 차이에 따른 쌀귀리 영양성분 및 기능성 성분 비교)

  • Ji-Hye Song;Dea-Wook Kim;Hak-Young Oh;Jong-Tak Yun;Yong-In Kuk;Kwang-Yeol Yang
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.4
    • /
    • pp.402-412
    • /
    • 2023
  • To cope with climate change, we compared the quality of naked oats (Avena sativa L.) cultivated in different regions. Naked oats were collected from domestic farms in different cultivation regions grouped as G1 and G2 for 3 years (2020-2022). The appearance, quality, and nutritional and functional compounds in the samples were assessed. In terms of appearance quality, the brightness and yellowness of the samples from the G1 region were significantly lower than those of the samples from the G2 region in 2020; however, no differences were observed between cultivation regions in the other 2 years. The results of testing the vitality of naked oats seeds showed that the electrical conductivity value was significantly lower in the samples from the G1 region than in those from the G2 region only in 2022. Among the nutritional components, moisture content was higher in the G2 region than in the G1 region over all 3 years, and the crude protein content was significantly higher in the G2 region than in the G1 region over all years. Carbohydrate content was significantly higher in the G1 region than in the G2 region in all 3 years and was inversely proportional to the crude protein content. The crude fat content tended to be significantly higher in the G1 region than in the G2 region, except in 2022. The levels of beta-glucan, a functional compound rich in naked oats, ranged between 3.4% and 4.2%, and except in 2020, there was no significant difference between cultivation regions. In addition, the content of avenanthramides, representative functional compounds that exist only in oats, was assessed. Over 2 years, in 2021 and 2022, the avenanthramide content was in the range of 2.4-20.7 ㎍/g and tended to be significantly higher in the G2 region than in the G1 region in both years. According to a survey of the average and minimum temperatures during the growing season of naked oats from 2020 to 2022, the average and minimum temperatures in January in the G2 region, which is the cultivation-limit area, were similar to those in Haenam in the G1 region. In conclusion, differences in nutritional and functional compounds were observed in naked oats grown in different cultivation areas. Therefore, considering the cultivation area of naked oats is expanding because of climate change, changes in the compounds that affect quality should be investigated.

Chemical Conversion Pattern of Salvianolic Acid B in Aqueous Solution under Different Decoction Conditions (달임 조건에 따른 Salvianolic Acid B의 구조변환 차이)

  • Lee, Hyoung Jae;Cho, Jeong-Yong;Lee, Sang-Hyun;Jeon, Tae-Il;Park, Keun-Hyung;Moon, Jae-Hak
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.6
    • /
    • pp.692-698
    • /
    • 2012
  • The chemical conversion pattern of salvianolic acid B (Sal B) in aqueous solution under different boiling conditions was compared. When the duration of boiling was varied, without varying temperature or pressure, the content of chemically converted compounds (CCCs) was mostly increased over time. In addition, under different conditions of temperature and pressure with the same boiling time, the content of a few compounds increased with increasing temperature and pressure. These results confirmed that high temperatures and pressures in boiling alter the final composition of CCCs of Sal B. Therefore, it was suggested that the boiling conditions (time, temperature, and pressure) may be responsible for alteration of biological activities of the compounds. Our investigation of the chemical conversion of compounds contained in foods and medicinal herbs may provide important information in clarifying the biological activity of Sal B containing foods and medicinal herbs.

Isolation of Bioactive Compounds from the Ethylacetate Fraction of Fermented Garlic Complex and their Tyrosinase Inhibition Activities (대산(大蒜)을 포함하는 복합발효물의 에틸아세테이트 분획으로부터 Tyrosinase 저해활성 성분의 분리 및 동정)

  • Song, Hyo-Nam;Baek, Nam-In
    • Korean Journal of Plant Resources
    • /
    • v.33 no.2
    • /
    • pp.63-72
    • /
    • 2020
  • Fermented complex from garlic and nine medicinal plants were developed as a natural whitening material. Tyrosinase inhibition activity was determined and four active compounds were isolated. The nutritional components of fermented garlic complex (FGC) were analyzed to confirm the applicability as a functional food material. Tyrosinase inhibitory effect of FGC was 88.6%. Methanol extract was partitioned with EtOAc, n-BuOH and H2O. From the EtOAc fraction (47 g), which showed the highest yield, active fractions were separated by repeated TLC, silica gel and ODS column chromatography to isolate active compounds. The chemical structures of the isolated compounds were analyzed by NMR and MS spectra. Phenylpropanoid compounds of 2,4,5-trihydroxy-benzenepropanoic acid (1) (1.9 mg) and 2,3,5-trihydroxy-benzenepropanoic acid (2) were confirmed. In addition, 2,4-dihydroxy-hydrocinnamic acid (3) (3.3 mg) and (+)sesamin (4) (6.1 mg) were isolated. These compounds will be useful as index compounds or functional compounds in FGC.

Comparative Analysis of Functional Compounds in Perilla frutescens at Different Stages and Growth Times (들깨의 생육단계와 부위별 기능성화합물 함량 비교 분석)

  • Kim, Hae Eun;Yun, Hee Rang;Heo, Jae Bok
    • Journal of Life Science
    • /
    • v.31 no.5
    • /
    • pp.511-519
    • /
    • 2021
  • The Perilla frutescens var. japonica HARA is widely cultivated in Korea for vegetable leaves and oil seeds. Perilla species have been used for food and medicine and are known to contain many functional compounds. In this study, we investigated the functional compound contents of Perilla during its growth stages to analyze the optimal harvest time and conditions. The contents of the Perilla sprouts were analyzed according to culture environment and days of growth. Sprouts grown in soil under natural light conditions showed high rosmarinic acid (23.19±0.16 mg/g) and GABA (0.55±0.05 mg/g) content. Therefore, the results suggest that 6 to 8 days after sowing in soil under natural light conditions was the optimum harvest condition for sprouts. Also, the functional compounds of Perilla were analyzed according to growth stage and plant part. As a result, caffeic acid and rosmarinic acid exhibited the highest content in the stage from vegetative growth to reproductive growth (0.28±0.03 ~ 0.30±0.07 mg/g rosmarinic acid and 20.60±7.02 ~ 19.37±3.18 mg/g caffeic acid), and luteolin and GABA showed the highest content in the reproductive growth stage and in the early stages of vegetative growth, respectively (31.11±2.98 ~ 22.35±1.64 ㎍/g luteolin and 0.42±0.09 ~ 0.37±0.04 mg/g GABA). It was confirmed that the content of caffeic acid (0.34±0.03 mg/g), rosmarinic acid (55.22±9.33 mg/g) and luteolin (1,044.89±6.72 ㎍/g) was the highest during the bolting stage. Overall, we identified the timing of the highest level of functional compounds in the sprouts and mature leaves of Perilla. These results suggest a suitable harvest time and conditions for sprouts and leaves for the use of Perilla as a functional material.

Morphological characteristics, chemical and genetic diversity of kenaf (Hibiscus cannabinus L.) genotypes

  • Ryu, Jaihyunk;Kwon, Soon-Jae;Kim, Dong-Gun;Lee, Min-Kyu;Kim, Jung Min;Jo, Yeong Deuk;Kim, Sang Hoon;Jeong, Sang Wook;Kang, Kyung-Yun;Kim, Se Won;Kim, Jin-Baek;Kang, Si-Yong
    • Journal of Plant Biotechnology
    • /
    • v.44 no.4
    • /
    • pp.416-430
    • /
    • 2017
  • The kenaf plant is used widely as food and in traditional folk medicine. This study evaluated the morphological characteristics, functional compounds, and genetic diversity of 32 kenaf cultivars from a worldwide collection. We found significant differences in the functional compounds of leaves from all cultivars, including differences in levels of chlorogenic acid isomer (CAI), chlorogenic acid (CA), kaempferol glucosyl rhamnoside isomer (KGRI), kaempferol rhamnosyl xyloside (KRX), kaemperitrin (KAPT) and total phenols (TPC). The highest TPC, KAPT, CA, and KRX contents were observed in the C22 cultivars. A significant correlation was observed between flowering time and DM yield, seed yield, and four phenolic compounds (KGRI, KRX, CAI, and TPC) (P < 0.01). To assess genetic diversity, we used 80 simple sequence repeats (SSR) primer sets and identified 225 polymorphic loci in the kenaf cultivars. The polymorphism information content and genetic diversity values ranged from 0.11 to 0.79 and 12 to 0.83, with average values of 0.39 and 0.43, respectively. The cluster analysis of the SSR markers showed that the kenaf genotypes could be clearly divided into three clusters based on flowering time. Correlations analysis was conducted for the 80 SSR markers; morphological, chemical and growth traits were found for 15 marker traits (corolla, vein, petal, leaf, stem color, leaf shape, and KGRI content) with significant marker-trait correlations. These results could be used for the selection of kenaf cultivars with improved yield and functional compounds.

Reaction of Bis(diethylamino)aluminum Hydride in Tetrahydrofuran with Selected Organic Compounds Containing Representative Functional Groups

  • Jin Soon Cha;Oh Oun Kwon;Jong Mi Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.2
    • /
    • pp.132-138
    • /
    • 1994
  • Bis(diethylamino)aluminum hydride was utilized in a systematic study of the approximate rates and stoichiometry of the reaction of excess reagent with 55 selected organic compounds containing representative functional groups under standardized conditions (THF, $0^{\circ}C$, reagent to compound=4 : 1) in order to define the characteristics of the reagent for selective reductions. The reducing action of BEAH was also compared with that of the parent aluminum hydride. The reducing action of the reagent is quite similar to that of aluminum hydride, but the reducing power is much weaker. Aldehydes and ketones were readily reduced in 1-3 h to the corresponding alcohols. However, unexpectedly, a ready involvement of the double bond in cinnamaldehyde was realized to afford hydrocinnamyl alcohol. The introduction of diethylamino group to the parent aluminum hydride appears not to be appreciably influential in stereoselectivity on the reduction of cyclic ketones. Both p-benzoquinone and anthraquinone utilized 2 equiv of hydride readily without evolution of hydrogen, proceeded cleanly to the 1,4-reduction products. Carboxylic acids and acid chlorides underwent reduction to alcohols slowly, whereas cyclic anhydrides utilized only 2 equiv of hydride slowly to the corresponding hydroxylacids. Especially, benzoic acid with a limiting amount of hydride was reduced to benzaldehyde in a yield of 80%. Esters and lactones were also readily reduced to alcohols. Epoxides examined all reacted slowly to give the ring-opened products. Primary and tertiary amides utilized 1 equiv of hydride fast and further hydride utilization was quite slow. The examination for possibility of achieving a partial reduction to aldehydes was also performed. Among them, benzamide and N,N-dimethylbenzamide gave ca, 90% yields of benzaldehyde. Both the nitriles examined were also slowly reduced to the amines. Unexpectedly, both aliphatic and aromatic nitro compounds proved to be relatively reactive to the reagent. On the other hand, azo- and azoxybenzenes were quite inert to BEAH. Cyclohexanone oxime liberated 1 equiv of hydrogen and utilized 1 equiv of hydride for reduction, corresponding to N-hydroxycyclohexylamine. Pyridine ring compounds were also slowly attacked. Disulfides were readily reduced with hydrogen evolution to the thiols, and dimethyl sulfoxide and diphenyl sulfone were also rapidly reduced to the sulfides.

Reaction of Diisobutylaluminum Hydride-Dimethyl Sulfide Complex with Selected Organic Compounds Containing Representative Functional Groups. Comparison of the Reducing Characteristics of Diisobutylaluminum Hydride and Its Dimethyl Sulfide Complex

  • Cha, Jin-Soon;Jeong, Min-Kyu;Kwon, Oh-Oun;Lee, Keung-Dong;Lee, Hyung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.10
    • /
    • pp.873-881
    • /
    • 1994
  • The approximate rate and stoichiometry of the reaction of excess diisobutylaluminum hydride-dimethyl sulfide complex($DIBAH-SMe_2$) with organic compounds containing representative functional group under standardized conditions (toluene, $0{\circ}C$) were examined in order to define the reducing characterstics of the reagent and to compare the reducing power with DIBAH itself. In general, the reducing action of the complex is similar to that of DIBAH. However, the reducing power of the complex is weaker than that of DIBAH. All of the active hydrogen compounds including alcohols, amines, and thiols evolve hydrogen slowly. Aldehydes and ketones are reduced readily and quantitatively to give the corresponding alcohols. However, $DIBAH-SMe_2$ reduces carboxylic acids at a faster rate than DIBAH alone to the corresponding alcohols with a partial evolution of hydrogen. Similarly, acid chlorides, esters, and epoxides are readily reduced to the corresponding alcohols, but the reduction rate is much slower than that of DIBAH alone. Both primary aliphatic and aromatic amides examined evolve 1 equiv of hydrogen rapidly and are reduced slowly to the amines. Tertiary amides readily utilize 2 equiv of hydride for reduction. Nitriles consume 1 equiv of hydride rapidly but further hydride uptake is quite slow. Nitro compounds, azobenzene, and azoxybenzene are reduced moderately. Cyclohexanone oxime liberates ca. 0.8 equiv of hydrogen rapidly and is reduced to the N-hydroxylamine stage. Phenyl isocyanate is rapidly reduced to the imine stage, but further hydride uptake is quite sluggish. Pyridine reacts at a moderate rate with an uptake of one hydride in 48 h, while pyridine N-oxide reacts rapidly with consumption of 2 equiv of hydride for reduction in 6h. Similarly, disulfides and sulfoxide are readily reduced, whereas sulfide, sulfone, and sulfonic acid are inert to this reagent under these reaction conditions.

A Benzenoid from the Stem of Acanthopanax senticosus

  • Ryu, Ji-Young;Son, Dong-Wook;Kang, Jung-Il;Kim, Hyun-Su;Kim, Bak-Kwang;Lee, Sang-Hyun
    • Archives of Pharmacal Research
    • /
    • v.27 no.9
    • /
    • pp.912-914
    • /
    • 2004
  • Seven compounds were isolated from the stem of Acanthopanax senticosus by repeated col-umn chromatography. Their structures were elucidated as isovanillin (1), (-)-sesamin (2), iso-fraxidin (3), (+)-syringaresinol (4), 5-hydroxymethylfurfural (5), eleutheroside B (6), and eleuth-eroside E (7) by spectral analysis. Among them, isovanillin (1) was isolated for the first time from the family Araliaceae.

Synthesis and Mesomorphic Properties of Achiral Liquid Crystals with 1,3-Dialkoxy-2-propyl Swallow-Tail

  • Lee, Seng-Kue;Bang, Mi-Yeon;Lee, Jong-Gun;Kang, Kyung-Tae;Kim, Yong-Bae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.575-577
    • /
    • 2003
  • Achiral swallow-tailed liquid crystals derived from 1,3-dialkoxy-2-propanol were prepared and their mesomorphic properties were investigated. 1,3-Dialkoxy-2-propyl swallow-tailed material showed antiferroelectric-like smectic C phase at lower temperature and in broader temperature range than the corresponding compounds with a branched alkyl group as a swallow-tail. They could serve as suitable host for antiferroelectric mixtures.

  • PDF