• Title/Summary/Keyword: functional compound

Search Result 645, Processing Time 0.028 seconds

Beauty Food Activities of Isolated Phenolic Compounds from Tetragonia tetragonioides (번행초(Tetragonia tetragonioides)로부터 추출한 Phenolic Compounds의 미용 식품 활성)

  • Jo, Jae-Bum;Lee, Eun-Ho;Cho, Young-Je
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.3
    • /
    • pp.333-341
    • /
    • 2016
  • This study examined the beauty food activities of water and ethanol extracts from Tetragonia tetragonioides. Content of phenolic compounds extracted with water and 50% ethanol extracts were 3.29 mg/g and 4.14 mg/g, respectively. 1,1-Diphenyl-2-picrylhydrazyl free radical scavenging activities of water and ethanol extracts were 98.45% and 91.20%, respectively, at $200{\mu}g/mL$ of phenolics. 2,2'-Azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radical decolorization activity was 97.28% for water extracts and 97.83% for ethanol extracts at $100{\mu}g/mL$ of phenolics. Antioxidant protection factor (PF) was 1.77 PF for water and ethanol extracts at $200{\mu}g/mL$ of phenolics. Thiobarbituric acid reactive substances of water and ethanol extracts were 94.77% and 95.64%, respectively, at $100{\mu}g/mL$ of phenolics. Tyrosinase inhibitory activity, which is related to skin-whitening, was confirmed to be 34.96% for ethanol extracts at $200{\mu}g/mL$ of phenolics. Elastase inhibitory activity and anti-wrinkle effect of 50% ethanol extracts were 78.9% at $200{\mu}g/mL$ of phenolics. Collagenase inhibitory activity of ethanol extracts was 61.29% at $200{\mu}g/mL$ of phenolics. Astringent effect was not detected in water extracts but was 7.82% for 50% ethanol extracts at $200{\mu}g/mL$ of phenolics. Hyaluronidase inhibitory activity as a measure of anti-inflammation was confirmed to be 81.04% for water extracts at $200{\mu}g/mL$ of phenolics. Based on these results, Tetragonia tetragonioides extracts can be used as a functional material and functional beauty food with antioxidant effects.

Effect of LED Light Quality Treatment on the Functional Optimization of Foliage Plant (LED 광질이 관엽식물의 기능성 최적화에 미치는 영향)

  • Kim, Myung-Seon;Chae, Soo-Cheon;Ann, Seoung-Won;Choi, Won-Chun;Lee, Myung-Won;Lee, Kook-Han;Liu, Xiao-Ming
    • Journal of Environmental Science International
    • /
    • v.21 no.5
    • /
    • pp.633-640
    • /
    • 2012
  • White light and compound light were found to be the ideal light sources for improving the functionality and ornamental value of indoor plants and reducing the cost of maintenance, but because compound light hinders people from recognizing the original color of plants and makes their eyes easily tired, white light was considered the optimal light satisfying all of the ornamental value, economic efficiency and functionality resulting from plant growth. On the other hand, in the results of examining physiological changes before and after treatment on fine dust PM10 and carbon dioxide removal capacity in a closed chamber under an artificial light source, the patterns of carbon dioxide and fine dust removal were similar among the treatment groups according to light condition, but according to plant type, the removal rate per unit leaf area was highest in $Spathiphyllum$ and lowest in $Dieffenbachia$. In the experiment on dust and carbon dioxide removal, the photosynthetic rate was over 2 times higher after the treatment, and the rate increased particularly markedly under compound light and white light, suggesting that the photosynthetic rate of plants increases differently according to light quality. These results show that light quality has a significant effect on the photosynthetic rate of plants, and suggests that plants with a high photosynthetic rate also have a high carbon dioxide and dust removal capacity. In conclusion, the photosynthetic rate of foliage plants increased under white and blue light that affect photosynthesis and the increased photosynthetic rate reduced carbon dioxide and fine dust, and therefore white and compound light were found to be the optimal light sources most functional and economically efficient in improving ornamental value and indoor air quality.

Analysis of VolatHe Flavour Components in Aromatic Rices using Electronic Nose System (전자코 시스템에 의한 향미의 방향미 성분 분석)

  • 문형인;이재학;이동진
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.6
    • /
    • pp.672-677
    • /
    • 1996
  • Volatile flavour components rates from aromatic rices were analyzed by Electronic nose systems. In functional group, polar compounds and aldehyde compounds showed much of volatile flavour components than apolar compounds, sulphur compounds and aminated compounds. The profiles of volatile flavour components rates were markedly differents of sen-sing times, amylose content.

  • PDF

Purification and Characterization of Bioactivity Compound Acemannan from Aloe vera (알로에 베라로부터 생리 활성 물질인 아세만난 분리 정제와 특성)

  • Ryu, Il-Whan;Sim, Chang-Sup;Lee, So-Young
    • Korean Journal of Pharmacognosy
    • /
    • v.28 no.2
    • /
    • pp.65-71
    • /
    • 1997
  • This study was carried out to purify and to characterize various bioactive material acemannan from Aloe vera. Purified acemannan was mannose (67%) and acetyl group (23%), and the rest of glucose was galactose that consists of long chain polydispered beta-(1, 4) linked mannan polymers. The sugar and acetyl group in the molecule were linked by molar ratio of 3 : 1. This polysaccharide from Aloe vera may provide functional flood and potential drug source with antiviral and immunomodulating properties.

  • PDF

Inhibitory Effect of Ginsenoside-Rp1, a Novel Ginsenoside Derivative, on the Functional Activation of Macrophage-like Cells

  • Park, Tae-Yoon;Cho, Jae-Youl
    • Biomolecules & Therapeutics
    • /
    • v.16 no.4
    • /
    • pp.370-376
    • /
    • 2008
  • Ginsenoside Rp1 (G-Rp1) is a ginseng saponin derivative with chemopreventive and anti-cancer activities. In this study, we examined the regulatory activity of G-Rp1 on the functional activation of macrophages. G-Rp1 remarkably inhibited TNF-$\alpha$ production, LPS-induced cell cytotoxicity, NO production, ROS generation, and phagocytic uptake from lipopolysacchride (LPS)-activated RAW264.7 cells. According to structural feature study using several G-Rp1 analogs, two carbohydrates (glucose-glucose) at R1 position were observedto be highly effective, compared to other structural derivatives. Although the inhibitory activities of G-Rp1 on macrophage functions were not remarkable, several points that G-Rp1 was known to be safe, and that this compound was orally effective, suggest that G-Rp1 may be beneficial in treating macrophage-mediated immunological diseases.

Modification of C2,3,23,28 Functional Groups on Asiatic Acid and Evaluation of Hepatoprotective Effects

  • Jeong, Byeong-Seon;Kim, Young-Choong;Lee, Eung-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.6
    • /
    • pp.977-982
    • /
    • 2007
  • For the development of novel hepatoprotective agents, C2, C3, C23 and C28 functional groups on asiatic acid were modified, and the prepared compounds were evaluated for their hepatoprotective effects. Among the prepared compounds, 9, 13 and 16 showed significant hepatoprotective activities against CCl4- and galactosamine (GaIN)-induced hepatotoxicity. Especially, compound 9 showed the most significant hepatoprotective effects against GaIN-induced hepatotoxicity (66.4% protection at 50 μM) and moderate hepatoprotective activities against CCl4-induced hepatotoxicity (20.7% protection at 50 μM).

Reaction of 2,2'-Biphenoxyborane in Tetrahydrofuran with Selected Organic Compounds Containing Representative Functional Groups

  • Cha, Jin-Soon;Kim, Jong-Mi;Lee, Ja-Cheol;Lee, Hyung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.6
    • /
    • pp.612-617
    • /
    • 1991
  • The approximate rates and stoichiometry of the reaction of excess 1,3,2-biphenyldioxaborepin [2,2'-biphenoxyborane (BPB)] with selected organic compounds containing representative functional groups under the standardized conditions (tetrahydrofuran, hydride to compound being 4 : 1, room temperature) was examined in order to define the characteristics of the reagent for selective reductions and compare its reducing power with those of other substituted boranes. The results indicate that BPB is unique and the reducing power is much stronger than that of other dialkoxyboranes, such as catecholborane and di-s-butoxyborane. BPB reduces aldehydes, ketones, quinones, lactones, tertiary amides, and sulfoxides readily. Carboxylic acids, anhydrides, esters, and nitriles are also reduced slowly. However, the reactions of acid chlorides, epoxides, primary amides, nitro compounds, and disulfides with this reagent proceed only sluggishly.

Reaction of Dipyrrolidinoaluminum Hydride in Tetrahydrofuran with Selected Organic Compounds Containing Representative Functional Groups

  • Jin Soon Cha;Oh Oun Kwon;Jong Mi Kim;Jae Cheol Lee
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.8
    • /
    • pp.644-649
    • /
    • 1994
  • The approximate rates and stoichiometry of reaction of excess dipyrrolinoaluminum hydride (DPAH) with selected organic compounds containing representative functional groups under standardized conditions (tetrahydrofuran, 0, reagent : compound=4 : 1) were examined in order to define the characteristics of the reagent for selective reductions. The reducing ability of DPAH was also compared with that of bis(diethylamino)aluminum hydride (BEAH). The reagent appears to be stronger than BEAH, but weaker than the parent reagent in reducing strength. DPAH shows a unique reducing characteristics. Thus, the reagent reduces aldehydes, ketones, esters, acid chlorides, epoxides, and nitriles readily. In addition to that, ${\alpha},\;{\beta}$-unsaturated aldehyde is reduced to the saturated alcohol. Quinone are reduced cleanly to the corresponding 1,4-reduction products. The examination for possibility of achieving a partial reduction to aldehydes was also performed. Both primary and tertiary aromatic carboxamides are converted to aldehydes with a limiting amount of DPAH. Finally, disulfides and sulfoxides are readily reduced to thiols and sulfides, respectively.

Development of Food-Grade Nano-Delivery Systems and Their Application to Dairy Foods: A Review (식품 소재를 이용한 나노전달체의 제조 및 유식품 적용에 관한 고찰)

  • Ha, Ho-Kyung;Lee, Won-Jae
    • Journal of Dairy Science and Biotechnology
    • /
    • v.36 no.4
    • /
    • pp.187-195
    • /
    • 2018
  • Nano-delivery systems, such as nanoparticles, nanoemulsions, and nanoliposomes, are carriers that have been used to enhance the chemical as well as physical stability and bioavailability of bioactive compound. Food-grade nano-delivery system can be produced with edible biopolymers including proteins and carbohydrates. In addition to the low-toxicity, biocompatibility, and biodegradability of these biopolymers, their functional characteristics, such as their ability to bind hydrophobic bioactive compounds and form a gel, make them potential and ideal candidates for the fortification of bioactive compounds in functional dairy foods. This review focuses on different types of nano-delivery systems and edible biopolymers as delivery materials. In addition, the applications of food-grade nano-delivery systems to dairy foods are also described.

Reaction of Thexylalkoxyboranes with Selected Orgnic Compounds Containing Representative Functional Groups Comparison of Reducing Characteristics of the Alkoxy Derivatives

  • 차진순;장석원;권오운;전중현
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.2
    • /
    • pp.243-249
    • /
    • 1998
  • The reaction of alcohol with a solution of thexylborane (ThxBH2) in tetrahydrofuran (THF) provides a new class of mild and selective reducing agents, thexylalkoxyboranes (ThxBHOR: R=Et, i-Pr, i-Bu, s-Bu, t-Bu, Ph). In order to elucidate the effect of the alkoxy group in reduction reactions, the reducing power of ThxBHOR toward selected organic compounds containing representative functional groups under practical conditions (THF, 25°, the quantitative amount of reagent to compound) has been investigated. Generally, the reactivity of ThxBHOR is largely dependent upon the alkoxy substituent. ThxBHOR can be synthesized from a variety of alcohols, thus allowing control of the steric and electronic environment of these reagents.