Browse > Article
http://dx.doi.org/10.22424/jmsb.2018.36.4.187

Development of Food-Grade Nano-Delivery Systems and Their Application to Dairy Foods: A Review  

Ha, Ho-Kyung (Department of Animal Science and Technology, Sunchon National University)
Lee, Won-Jae (Department of Animal Bioscience and Institute of Agriculture and Life Science, Gyeongsang National University)
Publication Information
Journal of Dairy Science and Biotechnology / v.36, no.4, 2018 , pp. 187-195 More about this Journal
Abstract
Nano-delivery systems, such as nanoparticles, nanoemulsions, and nanoliposomes, are carriers that have been used to enhance the chemical as well as physical stability and bioavailability of bioactive compound. Food-grade nano-delivery system can be produced with edible biopolymers including proteins and carbohydrates. In addition to the low-toxicity, biocompatibility, and biodegradability of these biopolymers, their functional characteristics, such as their ability to bind hydrophobic bioactive compounds and form a gel, make them potential and ideal candidates for the fortification of bioactive compounds in functional dairy foods. This review focuses on different types of nano-delivery systems and edible biopolymers as delivery materials. In addition, the applications of food-grade nano-delivery systems to dairy foods are also described.
Keywords
nano delivery system; nanoparticle; nanoemulsion; dairy food application;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Augustin, M. A. and Hemar, Y. 2009. Nano-and micro-structured assemblies for encapsulation of food ingredients. Chem. Soc. Rev. 38:902-912.   DOI
2 Birnbaum, D. T., Kosmala, J. D., Henthorn, D. B. and Brannon-Peppas, L. 2000. Controlled release of ${\beta}$-estradiol from PLAGA microparticles: The effect of organic phase solvent on encapsulation and release. J. Control. Release. 65:375-387.   DOI
3 Bouchemal, K., Briancon, S., Perrier, E. and Fessi, H. 2004. Nano-emulsion formulation using spontaneous emulsification: Solvent, oil and surfactant optimisation. Int. J. Pharm. 280:241-251.   DOI
4 Bruschi, M. L., Cardoso, M. L. C., Lucchesi, M. B. and Gremiao, M. P. D. 2003. Gelatin microparticles containing propolis obtained by spray-drying technique: Preparation and characterization. Int. J. Pharm. 264:45-55.   DOI
5 Bryant, C. M. and McClements, D. J. 1998. Molecular basis of protein functionality with special consideration of cold-set gels derived from heat-denatured whey. Trends Food Sci. Technol. 9:143-151.   DOI
6 Chen, L., Remondetto, G. E. and Subirade, M. 2006. Food protein-based materials as nutraceutical delivery systems. Trends Food Sci. Technol. 17:272-283.   DOI
7 Chen, L. and Subirade, M. 2005. Chitosan/${\beta}$-lactoglobulin core-shell nanoparticles as nutraceutical carriers. Biomaterials. 26:6041-6053.   DOI
8 Chuacharoen, T. and Sabliov, C. M. 2016. The potential of zein nanoparticles to protect entrapped ${\beta}$-carotene in the presence of milk under simulated gastrointestinal (GI) conditions. LWT Food Sci. Technol. 72:302-309.   DOI
9 Considine, T., Flanagan, J. and Loveday, S. M. 2009. Interactions between milk proteins and micronutrients. Pages 421-449 in Milk proteins, from expression to food. Thompson, A., Boland, M. J. and Singh, H. 1st ed. Elsevier, Academic Press. Amsterdam, The Netherlands.
10 Du, Y., Wang, L., Yuan, H., Wei, X. and Hu, F. 2009. Preparation and characteristics of linoleic acid-grafted chitosan oligosaccharide micelles as a carrier for doxorubicin. Colloids Surf. B. 69:257-263.   DOI
11 Elzoghby, A. O., Abo El-Fotoh, W. S. and Elgindy, N. A. 2011. Casein-based formulations as promising controlled release drug delivery systems. J. Control. Release. 153:206-216.   DOI
12 Fan, W., Xia, D., Zhu, Q., Li, X., He, S., Zhu, C., Guo, S., Hovgaard, L., Yang, M. and Gan, Y. 2018. Functional nanoparticles exploit the bile acid pathway to overcome multiple barriers of the intestinal epithelium for oral insulin delivery. Biomaterials. 151:13-23.   DOI
13 Fathi, M., Martín, A. and McClements, D. J. 2012. Nanoencapsulation of food ingredients using carbohydrate based delivery systems. Trends Food Sci. Technol. 39:18-39.
14 Forrest, S. A., Yada, R. Y. and Rousseau, D. 2005. Interactions of vitamin $D_3$ with bovine ${\beta}$-lactoglobulin A and ${\beta}$-casein. J. Agric. Food Chem. 53:8003-8009.   DOI
15 Ghorbanzade, T., Jafari, S. M., Akhavan, S. and Hadavi, R. 2017. Nano-encapsulation of fish oil in nano-liposomes and its application in fortification of yogurt. Food Chem. 216:146-152.   DOI
16 Ha, H. K., Kim, J. W., Lee, M. R. and Lee, W. J. 2013. Formation and characterization of quercetin-loaded chitosan oligosaccharide/${\beta}$-lactoglobulin nanoparticle. Food Res. Int. 52:82-90.   DOI
17 Ha, H., Lee, M. and Lee, W. 2018. Oxidative stability of DHA in ${\beta}$-lactoglobulin/oleic acid-modified chitosan oligosaccharide nanoparticles during storage in skim milk. LWT Food Sci. Technol. 90:440-447.   DOI
18 Ha, H. K., Jeon, N. E., Kim, J. W., Han, K. S., Yun, S. S., Lee, M. R. and Lee, W. J. 2016. Physicochemical characterization and potential prebiotic effect of whey protein isolate/inulin nano complex. Korean J. Food Sci. Anim. Resour. 36:267-274.   DOI
19 Ha, H. K., Kim, J. W., Lee, M. R., Jun, W. and Lee, W. J. 2015. Cellular uptake and cytotoxicity of beta-lactoglobulin nanoparticles: The effects of particle size and surface charge. Asian-Australas J. Anim. Sci. 28:420-427.   DOI
20 Ha, H. K., Nam, G. W., Khang, D., Park, S. J., Lee, M. R. and Lee, W. J. 2017. Development of two-step temperature process to modulate the physicochemical properties of beta-lactoglobulin nanoparticles. Korean J. Food Sci. Anim. Resour. 37:123-133.   DOI
21 Hu, Q. and Luo, Y. 2018. Recent advances of polysaccharide-based nanoparticles for oral insulin delivery. Int. J. Biol. Macromol. 120:775-782.   DOI
22 Huang, M., Ma, Z., Khor, E. and Lim, L. 2002. Uptake of FITC-chitosan nanoparticles by A549 cells. Pharm. Res. 19:1488-1494.   DOI
23 Hwang, J., Ha, H., Lee, M., Kim, J. W., Kim, H. and Lee, W. 2017. Physicochemical property and oxidative stability of whey protein concentrate multiple nanoemulsion containing fish oil. J. Food Sci. 82:437-444.   DOI
24 Ishak, K. A., Mohamad Annuar, M. S. and Ahmad, N. 2017. Nano-delivery systems for nutraceutical application. Pages 179-202 in Nanotechnology applications in food: Flavor, stability, nutrition, and safety. Opera, A. E. and Grumezescu, A. M. 1st Ed. Elsevier, Academic Press. Amsterdam, The Netherlands.
25 Jones, O. G. and McClements, D. J. 2010. Functional biopolymer particles: Design, fabrication, and applications. Compr. Rev. Food Sci. Food Saf. 9:374-397.   DOI
26 Ishizaka, T., Endo, K. and Koishi, M. 1981. Preparation of egg albumin microcapsules and microspheres. J. Pharm. Sci. 70:358-363.   DOI
27 Izquierdo, P., Esquena, J., Tadros, T. F., Dederen, C., Garcia, M., Azemar, N. and Solans, C. 2002. Formation and stability of nano-emulsions prepared using the phase Iinversion temperature method. Langmuir. 18:26-30.   DOI
28 Janes, K. A., Fresneau, M. P., Marazuela, A., Fabra, A. and Alonso, M. J. 2001. Chitosan nanoparticles as delivery systems for doxorubicin. J. Control. Release. 73:255-267.   DOI
29 Lane, K. E., Li, W., Smith, C. and Derbyshire, E. 2014. The bioavailability of an omega-3-rich algal oil is improved by nanoemulsion technology using yogurt as a food vehicle. Int. J. Food Sci. Tech. 49:1264-1271.   DOI
30 Lee, M., Choi, H., Ha, H. and Lee, W. 2013. Production and characterization of beta-lactoglobulin/alginate nanoemulsion containing coenzyme $Q_{10}$: Impact of heat teatment and alginate concentrate. Korean J. Food Sci. Anim. Resour. 33:67-74.   DOI
31 Li, P., Dai, Y. N., Zhang, J. P., Wang, A. Q. and Wei, Q. 2008. Chitosan-alginate nanoparticles as a novel drug delivery system for nifedipine. Int. J. Biomed. Sci. 4:221-228.
32 Liu, L., Zhou, C., Xia, X. and Liu, Y. 2016. Self-assembled lecithin/chitosan nanoparticles for oral insulin delivery: Preparation and functional evaluation. Int. J. Nanomedicine. 11:671-769.
33 Liang, L., Tajmir-Riahi, H. and Subirade, M. 2008. Interaction of ${\beta}$-lactoglobulin with resveratrol and its biological implications. Biomacromolecules. 9:50-56.   DOI
34 McClements, D. J. and Rao, J. 2011. Food-grade nanoemulsions: Formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit. Rev. Food Sci. Nutr. 51:285-330.   DOI
35 Livney, Y. D. 2010. Milk proteins as vehicles for bioactives. Curr. Opin. Colloid Interface Sci. 15:73-83.   DOI
36 Matalanis, A., Jones, O. G. and McClements, D. J. 2011. Structured biopolymer-based delivery systems for encapsulation, protection, and release of lipophilic compounds. Food Hydrocoll. 25:1865-1880.   DOI
37 Mauguet, M., Legrand, J., Brujes, L., Carnelle, G., Larre, C. and Popineau, Y. 2002. Gliadin matrices for microencapsulation processes by simple coacervation method. J. Microencapsul. 19:377-384.   DOI
38 Mozafari, M. R., Khosravi-Darani, K., Borazan, G. G., Cui, J., Pardakhty, A. and Yurdugul, S. 2008. Encapsulation of food ingredients using nanoliposome technology. Int. J. Food Prop. 11:833-844.   DOI
39 Roff, C. F. and Foegeding, E. A. 1996. Dicationic-induced gelation of pre-denatured whey protein isolate. Food Hydrocoll. 10:193-198.   DOI
40 Ron, N., Zimet, P., Bargarum, J. and Livney, Y. D. 2010. Beta-lactoglobulin-polysaccharide complexes as nanovehicles for hydrophobic nutraceuticals in non-fat foods and clear beverages. Int. Dairy J. 20:686-693.   DOI
41 Sarmento, B., Ribeiro, A., Veiga, F., Sampaio, P., Neufeld, R. and Ferreira, D. 2007. Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharm. Res. 24:2198-2206.   DOI
42 Singh, H. and Ye, A. 2009. Interactions and functionality of milk proteins in food emulsions. Pages 321-345 in Milk proteins, from expression to food. Thompson, A., Boland, M. J. and Singh, H. 1st ed. Elsevier, Academic Press. Amsterdam, The Netherlands.
43 Zimet, P. and Livney, Y. D. 2009. Beta-lactoglobulin and its nanocomplexes with pectin as vehicles for ${\omega}$-3 polyunsaturated fatty acids. Food Hydrocoll. 23:1120-1126.   DOI
44 Solans, C., Izquierdo, P., Nolla, J., Azemar, N. and Garcia-Celma, M. J. 2005. Nanoemulsions. Curr. Opin. Colloid Interface Sci. 10:102-110.   DOI
45 Xia, S., Xu, S., Zhang, X., Zhong, F. and Wang, Z. 2009. Nanoliposomes mediate coenzyme $Q_{10}$ transport and accumulation across human intestinal Caco-2 cell monolayer. J. Agric. Food Chem. 57:7989-7996.   DOI
46 Xue, J., Davidson, P. M. and Zhong, Q. 2015. Antimicrobial activity of thyme oil co-nanoemulsified with sodium caseinate and lecithin. Int. J. Food Microbiol. 210:1-8.   DOI