• Title/Summary/Keyword: functional coating

Search Result 311, Processing Time 0.027 seconds

The Effect of Physical and Chemical Stimuli on Ophthalmic Lens Coatings (물리적, 화학적 자극이 안경 렌즈의 코팅에 미치는 영향)

  • Kim, So Ra;Kim, Ji Yoon;Kim, Ka Young;Park, Mijung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.16 no.3
    • /
    • pp.237-245
    • /
    • 2011
  • Purpose: The present study was conducted to investigate whether certain repeated physical and/or chemical stimuli added on ophthalmic lenses might induce any changes of the functions of lens coatings. Methods: The changes in lens surface, light transmittance, foggy duration, durability of ophthalmic lenses were determined after the application of tearing-off with tape, rubbing with acetone, soaking in acetone or distilled water of ophthalmic lens (CR-39 material) as physical and/or chemical stimuli. Results: The change of ophthalmic lens surface was detected after soaking in acetone for longer than 30 minutes by observing the lens surface to figure out the functional change of hard coating. The ophthalmic lens soaked in distilled water for 180 minutes showed little functional change of anti-reflection coating as 1% by measuring light transmittance of lens. However, the function of anti-reflection coating was almost disappeared after the ophthalmic lens was soaked in acetone for 60 minutes. The foggy duration of ophthalmic lens soaked in acetone was increased by estimating foggy duration of lens. The lens coating was shown to be defected when the pre-damaged ophthalmic lenses were torn off with tape, rubbed with acetone and soaked in distilled water or acetone by observing pre-damaged lens surface to evaluate its durability. Conclusions: The careful management during ophthalmic lens dispensing or usual eyeglass wearing is needed since the change in ophthalmic lens coatings was shown by repeated physical and/or chemical stimuli.

Development of surface functional coating thin film utilizing combined processes of plasma activation surface treatment and nanoclay dispersion: In applications for transparent water vapor and oxygen barrier packaging films (플라즈마 활성화 표면처리 공정과 나노클레이 분산 적층 코팅을 이용한 표면 기능성 코팅 박막 개발: 수분 및 산소 차단성이 우수한 투명 포장재)

  • Nam Il Kim;Geug Tae Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.3
    • /
    • pp.97-103
    • /
    • 2023
  • Barrier films for transparent packaging materials with excellent moisture barrier properties are prepared, utilizing a nanoclay dispersion coating layer formed after a pretreatment process of plasma activation surface treatment process under vacuum at room temperature. Attention is paid on optimizing the coupling additive through the appropriate crosslinking process and optimal dispersion process of the coating process to enhance adhesion. Analysis of the functional coating thin film shows that the water vapor transmission rate is less than 10 g/m2/24 hrs (ASTM F-1249) and the oxygen transmission rate is less than 30 cc/m2/24 hrs (ASTM D3985). It is shown that water barrier properties of coating thin film prepared in this study are greater than conventional untreated films by 10 times or more. The thickness of the transparent gas barrier film is within 0.1 mm, and the transparent gas barrier complex is implemented in two layers. In the study of PET thin film interface characteristics, FT-IR experimental analysis shows the reaction activity was optimized at RDS 1.125 %.

Syntheses of Novel Sol-Gel Precursor Containing Anti-corrosive Functional Group and Their Uses in Organic-Inorganic Hybrid Coatings (내부식성이 우수한 졸-젤 전구체의 합성 및 이를 함유하는 유무기 하이브리드 코팅재)

  • Han, Mi-Jeong;Mang, Ji-Young;Seo, Ji-Yeon
    • Polymer(Korea)
    • /
    • v.34 no.5
    • /
    • pp.405-409
    • /
    • 2010
  • New sol-gel precursors having the ability to protect iron against corrosion were synthesized and used to prepare organic-inorganic hybrid coatings based on epoxy. Bisphenol A epoxy was modified with 3-isocyanatopropyltriethoxysilane to improve the compatibility, and water and HCl were used as catalysts for sol-gel process. Various coating formulations were prepared depending on the type of sol-gel precursors and the amount of each ingredient, and cast on iron substrates by dip-coating and thermally cured. Corrosion protection properties of coated iron were studied by a salt spray test and electrochemical impedance spectroscopy under 0.1 M NaCl electrolyte. Hybrid coatings containing anticorrosive functional group exhibited excellent corrosion protection on iron, compared to that of typical hybrid coatings. From electrochemical impedance spectroscopy, the hybrid coatings containing anticorrosive functional group could maintaine the initial impedance after 500 h, while the impedance of hybrid coatings without them started to decrease after 24 h.

Quality Prediction of Eggs Treated in Combination with Gamma Irradiation and Chitosan Coating Using Response Surface Methodology

  • Lee, Kyung-Heang;Jung, Samooel;Ham, Jun-Sang;Lee, Jun-Heon;Lee, Soo-Kee;Jo, Cheo-Run
    • Journal of Animal Science and Technology
    • /
    • v.53 no.3
    • /
    • pp.253-259
    • /
    • 2011
  • The aim of this work was to determine the method and predict the optimum conditions for egg quality stored for 7 days when combination treatments of irradiation and chitosan coating were applied using response surface methodology (RSM). A central composite design was chosen for the RSM in this study and the factors were irradiation dose (0~2 kGy) and concentration of chitosan coating material (0~2%). Performance of the irradiation and chitosan coating were evaluated by analyzing the egg quality and functional property factors. The predicted maximum level of Haugh units and foaming ability calculated by a developed model were 74.19 at 0 kGy of irradiation with coating by 0.96% chitosan solution and 50.83 mm at 2.0 kGy with 1.01%, respectively. The predicted minimum value of foam stability and 2-thiobarbituric acid reactive substances (TBARS) value were 2.97 mm at 0.39 kGy with 0.21% and 0.54 mg malonaldehyde/kg egg yolk at 0 kGy with 0.90% of chitosan solution, respectively. Results clearly showed that gamma irradiation negatively affected the Haugh unit and TBARS but positively affected the foaming capacity. The estimated value from the developed model by RSM was verified by no statistical difference with observed value. Therefore, RSM can be a good tool for optimization and prediction of egg quality when 2 or more treatments are combined. However, one should decide the target quality first to achieve a successful implementation of this technology.

A study on enhancing the bond strength of coating layer with support in preparation of low-pressure RO hollow fiber membranes (저압용 역삼투압 중공사형막 제조시 코팅층의 결합력 향상을 위한 연구)

  • 염충균;최정환;이정민;이정빈
    • Membrane Journal
    • /
    • v.11 no.2
    • /
    • pp.83-88
    • /
    • 2001
  • A methodology for enhancing the bond strength of a coating layer with a support has been established in preparing low-pressure reverse osmosis mO) hollow fiber which would experience shear badly in flowing feed un it. Prior to coating process, the support membrane, ultrafiltratiun polysulfone(PS) hollow fibers was pretreated with a reaction solution containing glutaraldehyde (GAl which has a good affinity to the suppurt membrane material as well as a reactivity to some of the cunstituents of cuating layer subsequently formed on the support by interfacial polymerization. Therefore, the reactant GA distributed unifonnly over the support layer through the pretreatment could provide a strong adhesive bond between the coating layer and the support, sticking fast to the support membrane through physical bond and, at the same time, connecting its functional group with the coating laycr by chemical bonding. Due to the strong adhesive bond, the resulting hollow fiber membrane showed an excellent long-tcnn stability in pcnneation.

  • PDF

A Study on the high Temperature Properties of the Graded Thermal Barrier Coatings by APS and PAS (APS법으로 제조된 열장벽 피막과 PAS법으로 제조된 열장벽 성형체의 고온 물성에 관한 연구)

  • 강현욱;권현옥;한주철;송요승;홍상희;허성강;김선화
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.2
    • /
    • pp.144-156
    • /
    • 1999
  • Thermal Barrier Coating with Functional Gradient Materials (FGM-TBC) can play an important role to protect the parts from harmful environments in high temperatures such as oxidation, corrosion, and wear and to improve the efficiency of aircraft engine by lowering the surface temperature on turbine blade. FGM-TBC can increase the life spans of product and improve the operating properties. Therfore, in this study the evaluations of mechanical and thermal properties of FGM-TBC such as fatigue, oxidation and wear-resistance at high temperatures have been conducted. The samples of both the TBC with 2, 3, 5 layers (YSZ/NiCrAlY) to be produced by Air Plasma Spray method (APS) and the bulk TBC with 6 layers to be produced by Plasma Assisted Sintering method (PAS) were used. Furthermore, residual stress, bond strength, and thermal conductivity were evaluated. The average thickness of the APS was 500$\mu\textrm{m}$ to 600$\mu\textrm{m}$ and the average thickness of the PAS was 3mm. The hardness number of the top layer of APS was 750 Hv to 810Hv and that of PAS was 950 Hv to 1440Hv. The $ZrO_2$ coating layer of APS was composed of tetragonal structure after spraying as the result of XRD analysis. As shown in the results of the high temperature wear test, the 3 layer coating of APS had the best wear resistance at $800^{\circ}C$ and the 5 layer coating of APS had the best wear resistance at $600^{\circ}C$. But, these coatings had the tendency of the low-temperature softening at $300^{\circ}C$. The main mechanism of wear was the adhesive wear and the friction coefficient of coatings was increased as increasing the test temperatures. A s results of thermal conductivity test, the ${\Delta}T$ of the APS coating was increased as number of layer and the range of thermal conductivity of the PAS was $800^{\circ}C$ to $1000^{\circ}C$.

  • PDF

The Estimation of Heating, Cooling Load and Economical Efficiency Analysis of Insulation Paint Coating Windows (단열 도료 코팅 창호의 냉난방부하 특성분석 및 경제성 평가)

  • Jeong, Yeol-Wha;Kim, Byoung-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.6
    • /
    • pp.95-102
    • /
    • 2011
  • The purpose of study is to estimate heating, cooling load performance and economic efficiency in office building with applied the functional paint. this paint can reduced SHGC(Solar Heat Gain Coefficient) on the glazing surface by coating. In this study, estimated to compared with double glazing, low-e glazing, IP(Insulation Paint) and IPu(Insulation UV-Cut Paint) coating glazing. As a result of this study, 1)heating & cooling load Analysis, SHGC value and U-factor of double glazing is about 0.70 and 3.29($W/m^2K$). low-E glazing is about 0.65 and 2.70($W/m^2K$). Two-side it is about 0.27 and 3.25($W/m^2K$). When compared to double glazing, annual heating & cooling load of low-E glazing, Two-side IPu and IP paint coating glazing is 3,012MWh($124kWh/m^2$), 2,910MWh($120kWh/m^2$), 2,867MWh($118.4kWh/m^2$) and 2,867MWh($118.4kWh/m^2$). It i sreduced to 2.0%, 5.2%, 6.7%, and 6.7% respectively. 2)the estimation of economic efficiency, low-e glazing installed in office building can not recover the investment within a lifetime 40years. but IPu and IP paint, two-side coating in glazing, have a payback period of 13 years respectively.

Preparation and Characteristics of Photochromic Plastic Lenses by Hard Coatings (하드코팅에 의한 광변색 플라스틱 렌즈의 제조 및 특성)

  • Yu, Dong-Sik;Ha, Jin-Wook;Moon, Byeong-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1635-1641
    • /
    • 2009
  • In this study, we have prepared plastic lenses with both photochromic and hard properties by hard coating, and evaluated their optical properties and surface characteristics. Photochromic effects could be observed on the UV spectra of the closed forms and the visible spectra of the open forms. Visible light transmittance of photochromic lenses was from 83.44% for graphite(GP) to 85.15% for blue(BL) in colourless state and from 71.10% for red(RE) to 79.98% for yellow(YE) in colour state. Red photochromic lens was higher in optical density(${\Delta}$OD) and color difference(${\Delta}$$E^{\ast}_\;{ab}$) than the others. Photochromic lenses applied by hard coating showed good adhesion, hot water resistance, chemical resistance and surface appearance. Also, compared to the uncoated lens, hardness and abrasion resistance were increased. Consequently, this coating system could impart functional properties such as photochromic and hard coating property onto ophthalmic lenses.

Recent Progress of Antibacterial Coatings on Solid Substrates Through Antifouling Polymers (박테리아 부착억제 고분자 기반 고체 표면의 항균 코팅 연구 동향)

  • Ko, Sangwon;Lee, Jae-Young;Park, Duckshin
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.371-378
    • /
    • 2021
  • The formation of hydrophilic surface based on polymers has received great attention due to the anti-adhesion of bacteria on solid substrates. Anti-adhesion coatings are aimed at suppressing the initial step of biofilm formation via non-cytotoxic mechanisms, and surfaces applied hydrophilic or ionic polymers showed the anti-adhesion effect for bioentities, such as proteins and bacteria. This is attributed to the formation of surface barrier from hydration layers, repulsions and osmotic stresses from polymer brushes, and electrostatic interactions between ionic polymers and cell surfaces. The antifouling polymer coating is usually fabricated by the grafting method through the bonding with functional groups on surfaces and the deposition method utilizing biomimetic anchors. This mini-review is a summary of representative antifouling polymers, coating strategies, and antibacterial efficacy. Furthermore, we will discuss consideration on the large area surface coating for application to public facilities and industry.

Preparation process of functional particles: II. Particle coating by rapid expansion of supercritical fluid solutions (기능성 미분말의 제조공정에 관한 연구: II. 초임계 분출법에 의한 입자 코팅)

  • 류완원;김영도;신건철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.4
    • /
    • pp.673-676
    • /
    • 1998
  • The Rapid Expansion of Supercritical fluid Solutions (RESS) process was applied to particles coating. Experiments were conducted in a fluidized bed with an internal nozzle in the center of the reaction tube. Pure glass beads (500~590$\mu$m, 74~149$\mu$m) and glass beads covered with brilliant blue were used as the core particles. Supercritical $CO_2$ solutions of paraffin were expanded through the nozzle into the bed that was fluidized by air. The precipitate coating materials on core surface was analyzed by using SEM, FT-IR. The releasing behavior of brilliant blue was inspected by atomic absorbance spectrophotometer. The release behavior of coated particles superior to noncoated particles.

  • PDF