Syntheses of Novel Sol-Gel Precursor Containing Anti-corrosive Functional Group and Their Uses in Organic-Inorganic Hybrid Coatings

내부식성이 우수한 졸-젤 전구체의 합성 및 이를 함유하는 유무기 하이브리드 코팅재

  • Han, Mi-Jeong (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Mang, Ji-Young (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Seo, Ji-Yeon (Advanced Materials Division, Korea Research Institute of Chemical Technology)
  • 한미정 (한국화학연구원 화학소재연구단) ;
  • 맹지영 (한국화학연구원 화학소재연구단) ;
  • 서지연 (한국화학연구원 화학소재연구단)
  • Received : 2010.03.23
  • Accepted : 2010.05.14
  • Published : 2010.09.25

Abstract

New sol-gel precursors having the ability to protect iron against corrosion were synthesized and used to prepare organic-inorganic hybrid coatings based on epoxy. Bisphenol A epoxy was modified with 3-isocyanatopropyltriethoxysilane to improve the compatibility, and water and HCl were used as catalysts for sol-gel process. Various coating formulations were prepared depending on the type of sol-gel precursors and the amount of each ingredient, and cast on iron substrates by dip-coating and thermally cured. Corrosion protection properties of coated iron were studied by a salt spray test and electrochemical impedance spectroscopy under 0.1 M NaCl electrolyte. Hybrid coatings containing anticorrosive functional group exhibited excellent corrosion protection on iron, compared to that of typical hybrid coatings. From electrochemical impedance spectroscopy, the hybrid coatings containing anticorrosive functional group could maintaine the initial impedance after 500 h, while the impedance of hybrid coatings without them started to decrease after 24 h.

내부식성이 우수한 기능기를 함유하는 새로운 졸-젤 전구체를 합성하고 이를 함유하는 유무기 하이브리드 코팅 조성물을 제조하였다. 코팅 조성물에는 통상의 졸-젤 전구체로 tetraethoxysilane을 사용하였고 비스페놀 A 타입의 에폭시를 실란화합물로 개질하였으며, 졸-젤 반응을 위하여 물과 HCl을 촉매로 사용하였다. 각 조성물은 졸-젤 전구체의 종류, 함량 등을 변화하여 다양한 코팅 조성물을 제조하였고 iron 기판위에 딥코팅하여 열경화하였다. 코팅된 iron 기판의 내부식성을 평가하기 위하여 염수분무시험과 전기화학적 임피던스 분광법을 사용하였는데, 내부식성 기능기를 함유한 유무기 하이브리드 코팅재가 일반적인 하이브리드 코팅재에 비해 매우 향상된 내부식성을 나타냄을 확인할 수 있었다. 내부식성 기능기를 함유한 코팅재의 경우, 0.1 M NaCl에서 500시간 이상 초기의 임피던스를 유지하는 반면, 일반적인 코팅재는 24시간 이후에 임피던스가 감소하는 것을 관찰할 수 있었다.

Keywords

Acknowledgement

Supported by : 지식경제부

References

  1. P. Herrasti, Appl. Surf. Sci., 172, 276 (2001). https://doi.org/10.1016/S0169-4332(00)00866-7
  2. E. Armelin, R. Oliver, and F. Liesa, Prog. Org. Coat., 59, 46 (2007). https://doi.org/10.1016/j.porgcoat.2007.01.013
  3. P. Pedeferri, Constr. Build. Mater., 10, 391 (1996). https://doi.org/10.1016/0950-0618(95)00017-8
  4. C. L. Page, Svolvear(Norway), 28, 123 (1997).
  5. L. Bertolini, M. Gastaldi, M. Pedeferri, and E. Redaelli, Corros. Sci., 44, 1497 (2002). https://doi.org/10.1016/S0010-938X(01)00168-8
  6. J. J. Friel, Corrosion, 42, 422 (1986). https://doi.org/10.5006/1.3584923
  7. G. Grundmeier, W. Schmidt, and M. Stratmann, Electrochim. Acta, 45, 2515 (2000). https://doi.org/10.1016/S0013-4686(00)00348-0
  8. R. L. Twite and G. P. Bierwagen, Prog. Org. Coat., 33, 91 (1998). https://doi.org/10.1016/S0300-9440(98)00015-0
  9. F. Dmitri, V. A. Daria, M. L. Yuri, G. S. Dmitry, and M. Helmuth, Adv. Funct. Mater., 19, 1720 (2009). https://doi.org/10.1002/adfm.200800946
  10. B. Sjogren, K. S. Hansen, H. Kjuus, and P. G. Persson, Occup. Environ. Med., 51, 335 (1994). https://doi.org/10.1136/oem.51.5.335
  11. S. Xianglin and N. S. Dalal, Environ. Health Perspect., 102, 231 (1994). https://doi.org/10.1289/ehp.94102s3231
  12. N. Mora, E. Cano, J. L. Polo, J. M. Puente, and J. M. Bastidas, Corros. Sci., 46, 563 (2004). https://doi.org/10.1016/S0010-938X(03)00171-9
  13. M. Bethencourt, F. J. Botana, M. A. Cauqui, and M. Marcos, Alloys and Compounds, 250, 455 (1997). https://doi.org/10.1016/S0925-8388(96)02826-5
  14. R. Zandi-zand, A. Ershad-langroudi, and A. Rahimi, Prog. Org. Coat., 53, 286 (2005). https://doi.org/10.1016/j.porgcoat.2005.03.009
  15. Y. Liua, D. Suna, H. Youa, and J. S. Chunga, Appl. Surf. Sci., 246, 82 (2005). https://doi.org/10.1016/j.apsusc.2004.10.040
  16. T. P. Chou, C. Chandrasekaran, S. J. Limmer, S. Seraji, and Y. Wu, Non-Crystalline Solids, 290, 153 (2001). https://doi.org/10.1016/S0022-3093(01)00818-3
  17. Y. J. Shin, M. H. Oh, Y. S. Yoon, and J. S. Shin, Polymer(Korea), 31, 485 (2007).
  18. Y. Lee, J. Kim, and Y. Son, Polymer(Korea), 23, 443 (1999).
  19. D. E. Nikles and G. W. Warren, Polymer News, 23, 223 (1998).
  20. D. E. Nikles, J-L. Liang, J. L. Cain, A. P. Chacko, R. I. Webb, and K. Belmore, J. Polym. Sci. Part A: Polym. Chem., 33, 2881 (1995). https://doi.org/10.1002/pola.1995.080331704
  21. A. P. Chacko and D. E. Nikles, Appl. Phys., 79, 4863 (1996). https://doi.org/10.1063/1.361634
  22. M. Han and D. E. Nikles, IEEE Trans. Magn., 35, 2763 (1999). https://doi.org/10.1109/20.800978
  23. F. Bentiss, M. Traisnel, and M. Lagrenee, Corros. Sci., 42, 127(1999).
  24. S. Ahmad, S. M. Ashraf, E. Sharmin, M. Nazir, and M. Alam, Prog. Org. Coat., 52, 85 (2005). https://doi.org/10.1016/j.porgcoat.2004.09.002
  25. D. E. Nikles, J. L. Cain, R. I. Webb, and A. P. Chacko, IEEE Trans. Magn., 30, 4068 (1994). https://doi.org/10.1109/20.333991
  26. C.-L. Chiang and R.-C. Chang, Compos. Sci. Technol., 68, 2849 (2008). https://doi.org/10.1016/j.compscitech.2007.10.017