Browse > Article
http://dx.doi.org/10.14478/ace.2021.1048

Recent Progress of Antibacterial Coatings on Solid Substrates Through Antifouling Polymers  

Ko, Sangwon (Transportation Environmental Research Department, Korea Railroad Research Institute)
Lee, Jae-Young (Transportation Environmental Research Department, Korea Railroad Research Institute)
Park, Duckshin (Transportation Environmental Research Department, Korea Railroad Research Institute)
Publication Information
Applied Chemistry for Engineering / v.32, no.4, 2021 , pp. 371-378 More about this Journal
Abstract
The formation of hydrophilic surface based on polymers has received great attention due to the anti-adhesion of bacteria on solid substrates. Anti-adhesion coatings are aimed at suppressing the initial step of biofilm formation via non-cytotoxic mechanisms, and surfaces applied hydrophilic or ionic polymers showed the anti-adhesion effect for bioentities, such as proteins and bacteria. This is attributed to the formation of surface barrier from hydration layers, repulsions and osmotic stresses from polymer brushes, and electrostatic interactions between ionic polymers and cell surfaces. The antifouling polymer coating is usually fabricated by the grafting method through the bonding with functional groups on surfaces and the deposition method utilizing biomimetic anchors. This mini-review is a summary of representative antifouling polymers, coating strategies, and antibacterial efficacy. Furthermore, we will discuss consideration on the large area surface coating for application to public facilities and industry.
Keywords
Anti-adhesion coating; Antibacterial coating; Antifouling polymers; Polymer-grafted surface; Polymer-deposited surface;
Citations & Related Records
연도 인용수 순위
  • Reference
1 I. Banerjee, R. C. Pangule, and R. S. Kane, Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms, Adv. Mater., 23, 690-718 (2011).   DOI
2 H. Jiang, S. Manolache, A. C. Wong, and F. S. Denes, Synthesis of dendrimer-type poly(ehtylene gloycol) structures from plasma-functionalized silicone rubber surfaces, J. Appl. Polym. Sci., 102, 2324-2337 (2006).   DOI
3 J. Wu, C. Zhao, R. Hu, W. Lin, Q. Wang, J. Zhao, S. M. Bilinovich, T. C. Leeper, L. Li, H. M. Cheung, S. Chen, J. Zheng, Probing the weak interaction of proteins with neutral and zwitterionic antifouling polymers, Acta Biomaterialia, 10, 751-760 (2014).   DOI
4 D. W. Kim, J.-M. Moon, S. Park, J. S. Choi, and W. K. Cho, Facile and effective antibacterial coatings on various oxide substrates, J. Ind. Eng. Chem., 68, 42-47 (2018).   DOI
5 C. Zhao, L. Li, Q. Wang, Q. Yu, and J. Zheng, Effect of film thickness on the antifouling performance of poly(hydroxy-functional methacrylates) grafted surfaces, Langmuir, 27, 4906-4913 (2011).   DOI
6 S. H. Ki, S. Lee, D. Kim, S. J. Song, S.-P. Hong, S. Cho, S. M. Kang, J. S. Choi, and W. K. Cho, Antibacterial film formation through iron(III) complexation and oxidation-induced cross-linking of OEG-DOPA, Langmuir, 35, 14465-14472 (2019).   DOI
7 A. L. Lewis, Z. L. Cumming, H. H. Goreish, L. C. Kirkwood, L. A. Tolhurst, and P. W. Stratford, Crosslinkable coatings from phosphorylcholine-based polymers, Biomaterials, 22, 99-111 (2001).   DOI
8 K. Fujimoto, H. Tadokoro, Y. Ueda, and Y. Ikada, Polyurethane surface modification by graft polymerization of acrylamide for reduced protein adsorption and platelet adhesion, Biomaterials, 14, 442-448 (1993).   DOI
9 C. H. Kim, Y. S. Choi, and K. S. Choi, Antibacterial activity by chitosan derivatives with quaternary ammonium salt, J. Ind. Eng. Chem., 7, 1020-1026 (1996).
10 G. Cheng, Z. Zhang, S. Chen, J. D. Bryers, and S. Jiang, Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces, Biomaterials, 28, 4192-4199 (2007).   DOI
11 I. Cringus-Fundeanu, J. Luijten, H. C. van der Mei, H. J. Busscher, and A. J. Schouten, Synthesis and characterization of surface-grafted polyacrylamide brushes and their inhibition of microbial adhesion, Langmuir, 23, 5120-5126 (2007).   DOI
12 W. J. Yang, T. Cai, K.-G. Neoh, E.-T. Kang, G. H. Dickinson, S. L.-M. Teo, and D. Rittschof, Biomimetic anchors for antifouling and antibacterial polymer brushes on stainless steel, Langmuir, 27, 7065-7076 (2011).   DOI
13 G. Cheng, G. Li, H. Xue, S. Chen, J. D. Bryers, S. Jiang, Zwitterionic carboxybetaine polymer surfaces and their resistance to long-term biofilm formation, Biomaterials, 30, 5234-5240 (2009).   DOI
14 H. Tan, R. Ma, C. Lin, Z. Liu, and T. Tang, Quaternized chitosan as an antimicrobial agent: Antimicrobial activity, mechanism of action and biomedical applications in orthopedics, Int. J. Mol. Sci., 14, 1854-1869 (2013).   DOI
15 T. Yoshioka, K. Tsuru, S. Hayakawa, and A. Osaka, Preparation of alginic acid layers on stainless-steel substrates for biomedical applications, Biomaterials, 24, 2889-2894 (2003).   DOI
16 Y. Jeong, L. T. Thuy, S. H. Ki, S. Ko, S. Kim, W. K. Cho, J. S. Choi, and S. M. Kang, Multipurpose antifouling coating of solid surfaces with the marine-derived polymer fucoidan, Macromol. Biosci., 1800137 (2018).   DOI
17 J. H. Park, S. Choi, H. C. Moon, H. Seo, J. Y. Kim, S.-P. Hong, B. S. Lee, E. Kang, J. Lee, D. H. Ryu, and I. S. Choi, Antimicrobial spray nanocoating of supramolecular Fe(III)-tannic acid metal-organic coordination complex: Applications to shoe insoles and fruits, Sci. Rep., 7, 6980 (2017).   DOI
18 K. Hirota, K. Murakami, K. Nemoto, Y. Miyake, Coating of a surface with 2-methacryloyloxyethyl phosphorylcholine (MPC) co-polymer significantly reduces retention of human pathogenic microorganisms, FEMS Microbiol. Lett., 248, 37-45 (2005).   DOI
19 B.-O. Jung, Y.-M. Lee, J.-J. Kim, Y.-J. Choi, K.-J. Jung, J.-J. Kim, and S.-J. Chung, The antimicrobial effect of water soluble chitosan, J. Ind. Eng. Chem., 10, 660-665 (1999).
20 M. Kumorek, I. M. Minisy, T. Krunclova, M. Vorsilakova, K. Venclikova, E. M. Chanova, O. Janouskova, and D. Kubies, pH-responsive and antibacterial properties of self-assembled multilayer films based on chitosan and tannic acid, Mater. Sci. Eng. C, 109, 110493 (2020).   DOI
21 K. Choi, T. Kim, S. Yun, J. Yoon, and J.-C. Lee, Development of antimicrobial N-halamine containing alkyl chain for paint, Appl. Chem. Eng., 22, 45-47 (2011).
22 J. Y. Kim, H.-J. Park, and J. Yoon, Antimicrobial activity and mechanism for various nanoparticles, Appl. Chem. Eng., 21, 366-371 (2010).
23 Q. Liu, A. Singh, R. Lalani, and L. Liu, Ultralow fouling polyacrylamide on gold surfaces via surface-initiated atom transfer radical polymerization, Biomacromolecules, 13, 1086-1092 (2012).   DOI
24 B. Kaczmarek, Tannic acid with antiviral and antibacterial activity as a promising component of biomaterials-a minireview, Materials, 13, 3224 (2020).   DOI
25 R. S. Kane, P. Deschatelets, and G. M. Whitesides, Kosmotropes form the basis of protein-resistant surfaces, Langmuir, 19, 2388-2391 (2003).   DOI
26 L. Xu, D. Pranantyo, K.-G. Neoh, and E.-T. Kang, Tea stains-inspired antifouling coatings based on tannic acid-functionalized agarose, ACS Sustainable Chem. Eng., 5, 3055-3062 (2017).   DOI
27 L. Garcia-Fernandez, J. Cui, C. Serrano, Z. Shafiq, R. A. Gropeanu, V. San Miguel, J. I. Ramos, M. Wang, G. K. Auernhammer, S. Ritz, A. A. Golriz, R. Berger, M. Wagner, and A. del Campo, Antibacterial strategies from the sea: Polymer-bound Cl-catechols for prevention for biofilm formation, Adv. Mater., 25, 529-533 (2013).   DOI
28 J. J. T. M. Swartjes, P. K. Sharma, T. G. van Kooten, H. C. van der Mei, M. Mahmoudi, H. J. Busscher, and E. T. J. Rochford, Current developments in antimicrobial surface coatings for biomedical applications, Curr. Med. Chem., 22, 2116-2129 (2015).   DOI
29 Y. F. Cheng, Y. H. Mei, G. Sathishkumar, Z. S. Lu, C. M. Li, F. Wang, Q. Y. Xia, L. Q. Xu, Tannic acid-assisted deposition of silk sericin on the titanium surfaces for antifouling application, Colloid Interface Sci. Commun., 35, 100241 (2020).   DOI
30 W. K. Cho, S. M. Kang, and J. K. Lee, Non-biofouling polymeric thin films on solid substrates, J. Nanosci. Nanotechnol., 14, 1231-1252 (2014).   DOI
31 L. Li, S. Chen, and S. Jiang, Protein interactions with oligo(ethylene glycol) (OEG) self-assembled monolayers: OEG stability, surface packing density and protein adsorption, J. Biomater. Sci. Polym. Ed., 18, 1415-1427 (2007).   DOI
32 K. G. Neoh, M. Li, E.-T. Kang, E. Chiong, and P. A. Tambyah, Surface modification strategies for combating catheter-related complications: Recent advances and challenges, J. Mater. Chem. B, 5, 2045-2067 (2017).   DOI
33 B. Wang, K. Ren. H. Chang, J. Wang, and J. Ji, Construction of degradable multilayer films for enhanced antibacterial properties, ACS Appl. Mater. Interfaces, 5, 4136-4143 (2013).   DOI
34 E. Ostuni, R. G. Chapman, M. N. Liang, G. Meluleni, G. Pier, D. E. Ingber, and G. M. Whitesides, Self-assembled monolayers that resist the adsorption of proteins and the adhesion of bacterial and mammalian cells, Langmuir, 17, 6336-6343 (2001).   DOI
35 S. Kim, J.-M. Moon, J. S. Choi, W. K. Cho, and S. M. Kang, Mussel-inspired approach to constructing robust multilayered alginate films for antibacterial applications, Adv. Fuct. Mater., 26, 4099-4105 (2016).   DOI
36 P. Kingshott, J. Wei, D. Bagge-Ravn, N. Gadegaard, and L. Gram, Covalent attachment of poly(ethylene glycol) to surfaces, critical for reducing bacterial adhesion, Langmuir, 19, 6912-6921 (2003).   DOI
37 J. K. Lee, S. M. Kang, S. H. Yang, and W. K. Cho, Micro/nanostructured films and adhesives for biomedical applications, J. Biomed. Nanotechnol., 11, 2081-2110 (2015).   DOI
38 M. Cloutier, D. Mantovani, and F. Rosei, Antifacterial coatings: Challenges, Perspectives, and Opportunities, Trends in Biotechnol., 33, 637-652 (2015).   DOI
39 J. A. Lichter, K. J. Van Vliet, and M. F. Rubner, Design of antibacterial surfaces and interfaces: Polyelectrolyte multilayers as a multifunctional platform, Macromolecules, 42, 8573-8586 (2009).   DOI