• Title/Summary/Keyword: function level evolution

Search Result 49, Processing Time 0.022 seconds

Extracting Frequency-Frequency Correlation Function from Two-Dimensional Infrared Spectroscopy: Peak Shift Measurement

  • Kwak, Kyung-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3391-3396
    • /
    • 2012
  • Two-dimensional infrared (2D-IR) spectroscopy can probe the fast structural evolution of molecules under thermal equilibrium. Vibrational frequency fluctuation caused by structural evolution produced the time-dependent line shape change in 2D-IR spectrum. A variety of methods has been used to connect the evolution of 2D-IR spectrum with Frequency-Frequency Correlation Function (FFCF), which connects the experimental observables to a molecular level description. Here, a new method to extract FFCF from 2D-IR spectra is described. The experimental observable is the time-dependent frequency shift of maximum peak position in the slice spectrum of 2D-IR, which is taken along the excitation frequency axis. The direct relation between the 2D-IR peak shift and FFCF is proved analytically. Observing the 2D-IR peak shift does not need the full 2D-IR spectrum which covers 0-1 and 1-2 bands. Thus data collection time to determine FFCF can be reduced significantly, which helps the detection of transient species.

Optimal laminate sequence of thin-walled composite beams of generic section using evolution strategies

  • Rajasekaran, S.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.5
    • /
    • pp.597-609
    • /
    • 2010
  • A problem formulation and solution methodology for design optimization of laminated thin-walled composite beams of generic section is presented. Objective functions and constraint equations are given in the form of beam stiffness. For two different problems one for open section and the other for closed section, the objective function considered is bending stiffness about x-axis. Depending upon the case, one can consider bending, torsional and axial stiffnesses. The different search and optimization algorithm, known as Evolution Strategies (ES) has been applied to find the optimal fibre orientation of composite laminates. A multi-level optimization approach is also implemented by narrowing down the size of search space for individual design variables in each successive level of optimization process. The numerical results presented demonstrate the computational advantage of the proposed method "Evolution strategies" which become pronounced to solve optimization of thin-walled composite beams of generic section.

Evolutionary Design of Image Filter Using The Celoxica Rc1000 Board

  • Wang, Jin;Jung, Je-Kyo;Lee, Chong-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1355-1360
    • /
    • 2005
  • In this paper, we approach the problem of image filter design automation using a kind of intrinsic evolvable hardware architecture. For the purpose of implementing the intrinsic evolution process in a common FPGA chip and evolving a complicated digital circuit system-image filter, the design automation system employs the reconfigurable circuit architecture as the reconfigurable component of the EHW. The reconfigurable circuit architecture is inspired by the Cartesian Genetic Programming and the functional level evolution. To increase the speed of the hardware evolution, the whole evolvable hardware system which consists of evolution algorithm unit, fitness value calculation unit and reconfigurable unit are implemented by a commercial FPGA chip. The Celoxica RC1000 card which is fitted with a Xilinx Virtex xcv2000E FPGA chip is employed as the experiment platform. As the result, we conclude the terms of the synthesis report of the image filter design automation system and hardware evolution speed in the Celoxica RC1000 card. The evolved image filter is also compared with the conventional image filter form the point of filtered image quality.

  • PDF

Image segmentation Using Hybrid Level Set (하이브리드 레벨 셋을 이용한 이미지 분할)

  • Joo Ki-See;Kim Eun-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.7
    • /
    • pp.1453-1463
    • /
    • 2004
  • The conventional image segmentation method using level set has been disadvantage since level set function in the gradient-based model evolves depending on the local profile of the edge. In this paper, a new model is introduced by hybridizing level set formulation and complementary smooth function in order to smooth the driving force. We consider an alternative way of getting the complementary function(CF) which is much easier to simulate and makes sense for most cases having no triple junctions. The rule of thumb is that CF must be computed such that the difference between their average and the original CF function should be able to introduce a reliable driving force for the evolution of the level set function. This proposed hybrid method tries to minimize drawbacks the conventional level set method.

COMPARISON OF NUMERICAL METHODS FOR TERNARY FLUID FLOWS: IMMERSED BOUNDARY, LEVEL-SET, AND PHASE-FIELD METHODS

  • LEE, SEUNGGYU;JEONG, DARAE;CHOI, YONGHO;KIM, JUNSEOK
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.1
    • /
    • pp.83-106
    • /
    • 2016
  • This paper reviews and compares three different methods for modeling incompressible and immiscible ternary fluid flows: the immersed boundary, level set, and phase-field methods. The immersed boundary method represents the moving interface by tracking the Lagrangian particles. In the level set method, an interface is defined implicitly by using the signed distance function, and its evolution is governed by a transport equation. In the phase-field method, the advective Cahn-Hilliard equation is used as the evolution equation, and its order parameter also implicitly defines an interface. Each method has its merits and demerits. We perform the several simulations under different conditions to examine the merits and demerits of each method. Based on the results, we determine the most suitable method depending on the specific modeling needs of different situations.

Tracking of Moving Objects Using Levelset and Histogram (레벨 세트와 히스토그램을 이용한 이동 물체의 추적)

  • 박수형;염동훈;고기영;김두영
    • Proceedings of the IEEK Conference
    • /
    • 2002.06d
    • /
    • pp.137-140
    • /
    • 2002
  • This paper presents a new variational framework for detecting and tracking moving objects in image sequence. Motion detection is performed using Level Set Model. The original frame is used to provide th moving object boundaries Then, the detection and the tracking problem are addressed in a common framework that employs a inward-outward curve evolution function. This function is minimized using a gradient decent method.

  • PDF

The Luminosity of Type Ia Supernova as a Function of Host-Galaxy Morphology

  • Kim, Young-Lo;Kang, Yijung;Lim, Dongwook;Lee, Young-Wook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.76.1-76.1
    • /
    • 2012
  • We have employed SNANA supernova analysis package to make YONSEI Supernova Catalogue 1, which contains distance modulus, light-curve shape parameters, and color or extinction values of each supernova. This database is used to study the dependence of Type Ia supernovae (SNe Ia) luminosities on the host-galaxy morphologies. The redshift range of this catalogue is 0.010 < z < 1.555, and we use three light-curve fitters: SALT2, MLCS2k2 (Rv = 3.1), and MLCS2k2 (Rv = 1.7). We find a systematic difference in the Hubble residual (HR) of $0.1{\pm}0.031$ mag between E-S0 and Scd/Sd/Irr host-galaxies, and of $0.16{\pm}0.044$ mag between passive and star-burst host-galaxies. This difference is significant over the $3{\sigma}$ level. Considering the significant difference in the mean age of stellar population between these morphological types, the difference in the HR reported here suggests that the evolution effect of SNe Ia luminosity should be considered in the cosmological application of SNe Ia data.

  • PDF

Shape extraction by using level set methods (레벨 세트 방식을 이용한 형태 추출)

  • 김성곤;신문걸;김두영
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.765-768
    • /
    • 1998
  • Level set method is used for extracting a shape within an image. This method is based on the ideas developed by osher and sethian to model propagating solid/liquid interfaces moving with curvature-dependent speeds. In this paper, we propose the new generalized formulation and stopping function of evolution for more accurate extraction of shape. Our method shows good results in some cases compared with the conventional ones.

  • PDF

Color Object Segmentation using Distance Regularized Level Set (거리정규화 레벨셋을 이용한 칼라객체분할)

  • Anh, Nguyen Tran Lan;Lee, Guee-Sang
    • Journal of Internet Computing and Services
    • /
    • v.13 no.4
    • /
    • pp.53-62
    • /
    • 2012
  • Object segmentation is a demanding research area and not a trivial problem of image processing and computer vision. Tremendous segmentation algorithms were addressed on gray-scale (or biomedical) images that rely on numerous image features as well as their strategies. These works in practice cannot apply to natural color images because of their negative effects to color values due to the use of gray-scale gradient information. In this paper, we proposed a new approach for color object segmentation by modifying a geometric active contour model named distance regularized level set evolution (DRLSE). Its speed function will be designed to exploit as much as possible color gradient information of images. Finally, we provide experiments to show performance of our method with respect to its accuracy and time efficiency using various color images.

Lightweight Design of Shell Structures Using Adaptive Inner-Front Level Set Based Topology Optimization (AIFLS-TOP) (적응적 내부 경계 레벨셋 기반 위상최적화를 이용한 쉘 구조물의 경량화 설계)

  • Park, Kang-Soo;Youn, Sung-Kie
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.12
    • /
    • pp.1180-1187
    • /
    • 2007
  • In the present work, topology optimization method using adaptive inner-front level set method is presented. In the conventional level set based topology optimization method, there exists an incapability for inner-front creation during optimization process. In this regard, as a new attempt to avoid and to overcome the limitation, an inner-front creation algorithm is proposed. In the inner-front creation algorithm, the strain energy density of a structure along with volume constraint is considered. Especially, to facilitate the inner-front creation process during the optimization process, the inner-front creation map which corresponds to the discrete valued function of strain energy density is constructed. In the evolution of the level set function during the optimization process, the least-squares finite element method (LSFEM) is employed. As an application to shell structures, the lightweight design of doubly curved shell and segmented mirror is carried out.