• Title/Summary/Keyword: fume

Search Result 801, Processing Time 0.023 seconds

Prediction of temperature distribution in hardening silica fume-blended concrete

  • Wang, Xiao-Yong
    • Computers and Concrete
    • /
    • v.13 no.1
    • /
    • pp.97-115
    • /
    • 2014
  • Silica fume is a by-product of induction arc furnaces and has long been used as a mineral admixture to produce high-strength, high-performance concrete. Due to the pozzolanic reaction between calcium hydroxide and silica fume, compared with that of Portland cement, the hydration of concrete containing silica fume is much more complex. In this paper, by considering the production of calcium hydroxide in cement hydration and its consumption in the pozzolanic reaction, a numerical model is proposed to simulate the hydration of concrete containing silica fume. The heat evolution rate of silica fume concrete is determined from the contribution of cement hydration and the pozzolanic reaction. Furthermore, the temperature distribution and temperature history in hardening blended concrete are evaluated based on the degree of hydration of the cement and the mineral admixtures. The proposed model is verified through experimental data on concrete with different water-to-cement ratios and mineral admixture substitution ratios.

Flow and Structural Analysis at Welding Fume of Automatic Gantry Robot - CFD/CAE and Automatic Convergence Study - (자동 겐트리 로봇의 용접 흄 유동 및 구조해석 - CFD/CAE 및 자동화 융합 연구 -)

  • Jang, Sung-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.158-163
    • /
    • 2012
  • This study investigates numerical analysis for robot welder fume flow and gantry structure. The solvers are STAR-CCM+ and ANSYS workbench used on flow and structural analysis. The results show that fume is diffused in factory when the welding fume is remove at dust collector. But dust collector intercepts the fume diffusion into workroom by removing most of welding fume. Structure analysis result shows that the reinforcement rod is evaluated to main the safety by supporting sufficient structure.

Bond Properties of Structural Poly Vinyl Alcohol Fiber in Cement Based Composites with Metakaolin and Silica Fume Contents (메타카올린 및 실리카퓸 첨가율에 따른 구조용 PVA 섬유와 시멘트 복합재료의 부착특성)

  • Lee, Jung-Woo;Park, Chan-Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.5
    • /
    • pp.9-16
    • /
    • 2012
  • In this study, the effect of metakaoline and silica fume on the bond performances of structural polyvinyl alcohol (PVA) fiber in cement mortar, including bond strength, interface toughness, and microstructure analysis are presented. Metakaoline and silica fume contents ranging from 0 % to 15 % are used in the mix proportions. Pullout tests are conducted to measure the bond performance of PVA fiber from cement mortar. Test results showed the incorporation of metakaoline and silica fume can effectively enhance the PVA fiber-cement mortar interfacial properties. Bond strength and interface toughness increased with metakaoline and silica fume content up to 10 % in cement mortar and decreased when the metakaoline and silica fume content reached 15 %. The microstructural observation confirms the findings on the interface bond mechanism drawn from the fiber pullout test results.

Fume Particle Dispersion in Laser Micro-Hole Machining with Oblique Stagnation Flow Conditions (경사 정체점 유동이 적용된 미세 홀 레이저 가공 공정의 흄 오염입자 산포특성 연구)

  • Kim, Kyoungjin;Park, Joong-Youn
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.77-82
    • /
    • 2021
  • This numerical study focuses on the analysis of fume particle dispersion characteristics over the surface of target workpiece in laser micro-hole machining process. The effects of oblique stagnation flow over fume generating machining point are examined by carrying out a series of three-dimensional random particle simulations along with probabilistic particle generation model and particle drag correlation of low Reynolds number. Present computational model of fume particle dispersion is found to be capable of assessing and quantifying the fume particle contamination in precision hole machining which may influenced by different types of air flow patterns and their flow intensity. The particle size dependence on dispersion distance of fume particles from laser machining point is significant and the effects of increasing flow oblique angle are shown quite differently when slot blowing or slot suction flows are applied in micro-hole machining.

The Engineering Properties of Recycled Aggregate Concrete using Silica-Fume and Fly-Ash (플라이애쉬와 실리카흄을 사용한 재생골재 콘크리트의 공학적 특성)

  • 구봉근;이상근;신재인;이현석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.229-232
    • /
    • 1999
  • This study provided the engineering properties of the recycled aggregate concrete with fly-ash and silica-fume. There are considered recycled aggregate substitution ratio, and fly-ash silica-fume mix ratio as the experimental variable. From the experimental result, we could know that the recycled aggregate concrete mixed silica-fume is superior on the compressive strength but, is poor on the construction property than fly-ash. The optimal mix ratio of the fly-ash and silica-fume is 10% in all.

  • PDF

Review on Flux Cored Wire Development for Welding Fume Reduction (용접 Fume 저감을 위한 용접재료의 개발 동향)

  • 한종만
    • Journal of Welding and Joining
    • /
    • v.16 no.1
    • /
    • pp.49-51
    • /
    • 1998
  • 최근 포항공단 내 철 구조물 용접작업자가 Mn에 의한 뇌병변이 국내 최초로 발견되어 CO$_{2}$ 용접시 발생하는 Mn Fume에 기인한 것으로 의심을 하고 있으며, 이 문제가 언론을 비롯한 관련기관에서 쟁점화 된 바가 있지만 확실한 결론이 도출된 것으로는 보이지 않는다. 본 고에서는 CO$_{2}$ 용접 시 Fume의 발생 기구 및 이의 영향에 대한 검토와 용접 Fume을 줄일 수 있는 용접재료 측면에서의 대책과 현황에 대해 검토하고자 한다.

  • PDF

Effects of using silica fume and lime in the treatment of kaolin soft clay

  • Alrubaye, Ali Jamal;Hasan, Muzamir;Fattah, Mohammed Y.
    • Geomechanics and Engineering
    • /
    • v.14 no.3
    • /
    • pp.247-255
    • /
    • 2018
  • Soil stabilization can make the soils becoming more stable by using an admixture to the soil. Lime stabilization enhances the engineering properties of soil, which includes reducing soil plasticity, increasing optimum moisture content, decreasing maximum dry density and improving soil compaction. Silica fume is utilized as a pozzolanic material in the application of soil stabilization. Silica fume was once considered non-environmental friendly. In this paper, the materials required are kaolin grade S300, lime and silica fume. The focus of the study is on the determination of the physical properties of the soils tested and the consolidation of kaolin mixed with 6% silica fume and different percentages (3%, 5%, 7% and 9%) of lime. Consolidation test is carried out on the kaolin and the mixtures of soil-lime-silica fume to investigate the effect of lime stabilization with silica fume additives on the consolidation of the mixtures. Based on the results obtained, all soil samples are indicated as soils with medium plasticity. For mixtures with 0% to 9% of lime with 6% SF, the decrease in the maximum dry density is about 15.9% and the increase in the optimum moisture content is about 23.5%. Decreases in the coefficient of permeability of the mixtures occur if compared to the coefficient of permeability of kaolin soft clay itself reduce the compression index (Cc) more than L-SF soil mix due to pozzolanic reaction between lime and silica fume and the optimum percent of lime-silica fume was found to be (5%+6%) mix. The average coefficient of volume compressibility decreases with increasing the stabilizer content due to pozzolanic reaction happening within the soil which results in changes in the soil matrix. Lime content +6% silica fume mix can reduce the coefficient of consolidation from at 3%L+6%SF, thereafter there is an increase from 9%L+6%SF mix. The optimal percentage of lime silica fume combination is attained at 5.0% lime and 6.0% silica fume in order to improve the shear strength of kaolin soft clay. Microstructural development took place in the stabilized soil due to increase in lime content of tertiary clay stabilized with 7% lime and 4% silica fume together.

A Study on Fume Formation Ratio on Flux Cored Arc Welding Process (플럭스 코어드 아크 용접 공정에서의 흄 형성량에 관한 연구)

  • Yoon, Chung-Sik;Paik, Nam-Won
    • Journal of Environmental Health Sciences
    • /
    • v.25 no.3
    • /
    • pp.108-112
    • /
    • 1999
  • A study was conducted for the effects of input energy on fume formation ratios based on electrode(FFR$_{electrode}(g/kg_{electrode})),\;deposited\;metal(FFR_{weld}(g/kg_{weld}))\;and\;slag(FFR_{slag}(g/kg_{slag}))\;at\;CO_2$ flux cored arc welding on stainless steel. Experiments were run in well designed welding fume box. Six types of flux cored wires were used and three levels of current and voltages were given. The measured values of $FFR_{electrode},\;FFR_{weld},\;FFR_{slag}\;are\;7.90{\pm}1.47\;g/kg_{electrode},\;9.18{\pm}1.65\;g/kg_{\electrode},\;71.8{\pm}24.2\;g/kg_{slag}$ respectively. Fume formation ratios are not increased dramatically by input energy because of simultaneous increasing of melted electrodes, deposited metal and slag. The results indicate that the test of fume formation ratios in the research on production of low fume welding wire can be run at the fixed condition of input energy rather than various condition.

  • PDF

Hydration heat and autogenous shrinkage properties of silica-fume included mass concrete (실리카퓸을 사용한 매스콘크리트의 수화열과 자기수축 특성)

  • Kim, Chin-Yong;Kim, Jin-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.489-492
    • /
    • 2008
  • Adiabatic temperature rise and autogenous shrinkage experiments were performed for three silica-fume included mass concrete mixtures and a reference mixture without silica-fume, in order to investigate the influence of silica-fume on the hydration heat and autogenous shrinkage properties of mass concrete, and to examine applicability of silica-fume to mass concrete. It was revealed from the experiment that, for mass concrete, the rate of hydration was hardly increased while the maximum adiabatic temperature rise decreased about 5$^{\circ}$C by the addition of silica-fume, and the amount of autogenous shrinkage was almost the same regardless of silica-fume replacement. These facts imply that silica-fume can enhance the resistance of mass concrete to temperature cracking as well as the durability.

  • PDF

Airborne Concentrations of Welding Fume and Metal Components by Type of Welding (용접작업 형태별 공기중 용접흄 농도와 금속 성분에 관한 조사연구)

  • Lee, Kwon Sup;Paik, Nam Won
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.4 no.1
    • /
    • pp.71-80
    • /
    • 1994
  • This study was conducted to evaluate worker exposure to welding fume in automobile body shop and to evaluate metal components by type of welding. The results are summarized as follows: 1. Average concentrations of total welding fume without and with ventilation were $5.2mg/m^3$ and $2.49mg/m^3$, respectively. Thus, the average reduction rate of total fume by ventilation was 52.1 %. 2. The highest fume concentration was indicated at shielded arc welding, followed by $CO_2$ gas welding, argon arc welding, and spot welding in order of decreasing concentration. 3. Average respirable fume concentrations without and with ventilation were $2.97mg/m^3$ and $1.64mg/m^3$, respectively. 4. Further analysis of welding fume indicated that total fume consisted of $Fe_2O_3$, ZnO, Mn, Pb, and CuO, in order of decreasing amount. Combined effect of metals was below the American Conference of Governmental Industrial Hygienists (ACGIH)Threshold Limit Values (TLVs).

  • PDF