• 제목/요약/키워드: fully distributed

검색결과 294건 처리시간 0.031초

머시닝 시스템의 실시간 제어를 위한 개방형 구조 제어기 (An open architecture controller for the real-time control of machining processes)

  • 이재영;권욱현;박재현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1324-1327
    • /
    • 1996
  • This paper presents an open architecture controller (OAC) for machining systems and describes the OAC testbed at Seoul National University. Because our OAC is designed for fully open systems, it does not depend on any specific hardware or software components. This openness includes software reusability which enables integration of a wide range of monitoring and control features. In addition to openness, our OAC system provides guaranteed real-time performance, an important requirement for advanced manufacturing.

  • PDF

프레넬영역 안테나 측정법의 파리미터 분석과 측정 가이드라인 제시 (Parametric Analysis and Measurement Guideline of Fresnel Region Antenna Measurement Method)

  • 오순수
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2008년도 하계종합학술대회
    • /
    • pp.351-352
    • /
    • 2008
  • In this paper, parametric analysis of Fresnel region antenna measurement method has been performed for the square aperture having the uniformly distributed current. The optimum number of Fresnel region field and the tolerable distance between two antennas have been guided. This parametric analysis could be fully utilized when performing Fresnel region antenna measurement method. Other types of current distribution and aperture shape will be investigated in the near future

  • PDF

A MASS LUMPING AND DISTRIBUTING FINITE ELEMENT ALGORITHM FOR MODELING FLOW IN VARIABLY SATURATED POROUS MEDIA

  • ISLAM, M.S.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제20권3호
    • /
    • pp.243-259
    • /
    • 2016
  • The Richards equation for water movement in unsaturated soil is highly nonlinear partial differential equations which are not solvable analytically unless unrealistic and oversimplifying assumptions are made regarding the attributes, dynamics, and properties of the physical systems. Therefore, conventionally, numerical solutions are the only feasible procedures to model flow in partially saturated porous media. The standard Finite element numerical technique is usually coupled with an Euler time discretizations scheme. Except for the fully explicit forward method, any other Euler time-marching algorithm generates nonlinear algebraic equations which should be solved using iterative procedures such as Newton and Picard iterations. In this study, lumped mass and distributed mass in the frame of Picard and Newton iterative techniques were evaluated to determine the most efficient method to solve the Richards equation with finite element model. The accuracy and computational efficiency of the scheme and of the Picard and Newton models are assessed for three test problems simulating one-dimensional flow processes in unsaturated porous media. Results demonstrated that, the conventional mass distributed finite element method suffers from numerical oscillations at the wetting front, especially for very dry initial conditions. Even though small mesh sizes are applied for all the test problems, it is shown that the traditional mass-distributed scheme can still generate an incorrect response due to the highly nonlinear properties of water flow in unsaturated soil and cause numerical oscillation. On the other hand, non oscillatory solutions are obtained and non-physics solutions for these problems are evaded by using the mass-lumped finite element method.

Optimal Coordination of Intermittent Distributed Generation with Probabilistic Power Flow

  • Xing, Haijun;Cheng, Haozhong;Zhang, Yi
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권6호
    • /
    • pp.2211-2220
    • /
    • 2015
  • This paper analyzes multiple active management (AM) techniques of active distribution network (ADN), and proposes an optimal coordination model of intermittent distributed generation (IDG) accommodation considering the timing characteristic of load and IDG. The objective of the model is to maximize the daily amount of IDG accommodation under the uncertainties of IDG and load. Various active management techniques such as IDG curtailment, on-load tap changer (OLTC) tap adjusting, voltage regulator (VR) tap adjusting, shunt capacitors compensation and so on are fully considered. Genetic algorithm and Primal-Dual Interior Point Method (PDIPM) is used for the model solving. Point estimate method is used to simulate the uncertainties. Different scenarios are selected for the IDG accommodation capability investigation under different active management schemes. Finally a modified IEEE 123 case is used to testify the proposed accommodation model, the results show that the active management can largely increase the IDG accommodation and penetration.

Robust $H_{\infty}$ Power Control for CDMA Systems in User-Centric and Network-Centric Manners

  • Zhao, Nan;Wu, Zhilu;Zhao, Yaqin;Quan, Taifan
    • ETRI Journal
    • /
    • 제31권4호
    • /
    • pp.399-407
    • /
    • 2009
  • In this paper, we present a robust $H_{\infty}$ distributed power control scheme for wireless CDMA communication systems. The proposed scheme is obtained by optimizing an objective function consisting of the user's performance degradation and the network interference, and it enables a user to address various user-centric and network-centric objectives by updating power in either a greedy or energy efficient manner. The control law is fully distributed in the sense that only its own channel variation needs to be estimated for each user. The proposed scheme is robust to channel fading due to the immediate decision of the power allocation of the next time step based on the estimations from the $H_{\infty}$ filter. Simulation results demonstrate the robustness of the scheme to the uncertainties of the channel and the excellent performance and versatility of the scheme with users adapting transmit power either in a user-centric or a network-centric efficient manner.

A Distributed Decision-Making Mechanism for Wireless P2P Networks

  • Wu, Xu;He, Jingsha;Xu, Fei;Zhang, Xi
    • Journal of Communications and Networks
    • /
    • 제11권4호
    • /
    • pp.359-367
    • /
    • 2009
  • Trust-based solutions provide some form of payment to peers to encourage good behavior. The problem with trust management systems is that they require prior knowledge to work. In other words, peers are vulnerable to attack if they do not have knowledge or correct knowledge of other peers in a trust management system. Therefore, considering only trust is inadequate when a decision is made to identify the best set of peers to utilize. In order to solve the problem, we propose a distributed decision-making mechanism for wireless peer-to-peer (P2P) networks based on game theory and relevant trust mechanisms in which we incorporate the element of trust and risk into a single model. The main idea of our mechanism is to use utility function to express the relationship between benefits and costs of peers, and then make the decision based on expected utility as well as risk attitude in a fully distributed fashion. The unique feature of our mechanism is that it not only helps a peer to select its partners, but also mitigates vulnerabilities in trust-based mechanisms. Through analysis and experiments, we believe our approach is useful for peers to make the decision regarding who to interact with. In addition, it is also a good starting point for exploring tradeoffs among risk, trust and utility.

Throughput Analysis and Optimization of Distributed Collision Detection Protocols in Dense Wireless Local Area Networks

  • Choi, Hyun-Ho;Lee, Howon;Kim, Sanghoon;Lee, In-Ho
    • Journal of Communications and Networks
    • /
    • 제18권3호
    • /
    • pp.502-512
    • /
    • 2016
  • The wireless carrier sense multiple access with collision detection (WCSMA/CD) and carrier sense multiple access with collision resolution (CSMA/CR) protocols are considered representative distributed collision detection protocols for fully connected dense wireless local area networks. These protocols identify collisions through additional short-sensing within a collision detection (CD) period after the start of data transmission. In this study, we analyze their throughput numerically and show that the throughput has a trade-off that accords with the length of the CD period. Consequently, we obtain the optimal length of the CD period that maximizes the throughput as a closed-form solution. Analysis and simulation results show that the throughput of distributed collision detection protocols is considerably improved when the optimal CD period is allocated according to the number of stations and the length of the transmitted packet.

New execution model for CAPE using multiple threads on multicore clusters

  • Do, Xuan Huyen;Ha, Viet Hai;Tran, Van Long;Renault, Eric
    • ETRI Journal
    • /
    • 제43권5호
    • /
    • pp.825-834
    • /
    • 2021
  • Based on its simplicity and user-friendly characteristics, OpenMP has become the standard model for programming on shared-memory architectures. Checkpointing-aided parallel execution (CAPE) is an approach that utilizes the discontinuous incremental checkpointing technique (DICKPT) to translate and execute OpenMP programs on distributed-memory architectures automatically. Currently, CAPE implements the OpenMP execution model by utilizing the DICKPT to distribute parallel jobs and their data to slave machines, and then collects the results after executing these distributed jobs. Although this model has been proven to be effective in terms of performance and compatibility with OpenMP on distributed-memory systems, it cannot fully exploit the capabilities of multicore processors. This paper presents a novel execution model for CAPE that utilizes two levels of parallelism. In the proposed model, we add another level of parallelism in the form of multithreaded processes on slave machines with the goal of better exploiting their multicore CPUs. Initial experimental results presented near the end of this paper demonstrate that this model provides significantly enhanced CAPE performance.

A Medium Access Control Mechanism for Distributed In-band Full-Duplex Wireless Networks

  • Zuo, Haiwei;Sun, Yanjing;Li, Song;Ni, Qiang;Wang, Xiaolin;Zhang, Xiaoguang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권11호
    • /
    • pp.5338-5359
    • /
    • 2017
  • In-band full-duplex (IBFD) wireless communication supports symmetric dual transmission between two nodes and asymmetric dual transmission among three nodes, which allows improved throughput for distributed IBFD wireless networks. However, inter-node interference (INI) can affect desired packet reception in the downlink of three-node topology. The current Half-duplex (HD) medium access control (MAC) mechanism RTS/CTS is unable to establish an asymmetric dual link and consequently to suppress INI. In this paper, we propose a medium access control mechanism for use in distributed IBFD wireless networks, FD-DMAC (Full-Duplex Distributed MAC). In this approach, communication nodes only require single channel access to establish symmetric or asymmetric dual link, and we fully consider the two transmission modes of asymmetric dual link. Through FD-DMAC medium access, the neighbors of communication nodes can clearly know network transmission status, which will provide other opportunities of asymmetric IBFD dual communication and solve hidden node problem. Additionally, we leverage FD-DMAC to transmit received power information. This approach can assist communication nodes to adjust transmit powers and suppress INI. Finally, we give a theoretical analysis of network performance using a discrete-time Markov model. The numerical results show that FD-DMAC achieves a significant improvement over RTS/CTS in terms of throughput and delay.

분산 실시간 시스템에서 우선순위와 통신비용을 고려한 주기적 타스크들의 중복 스케줄링 (Duplication Scheduling of Periodic Tasks Based on Precedence Constraints and Communication Costs in Distributed Real-Time Systems)

  • Park, Mi-Kyoung;Kim, Chang-Soo
    • 한국멀티미디어학회논문지
    • /
    • 제2권4호
    • /
    • pp.378-389
    • /
    • 1999
  • 분산 실시간 시스템에서 타스크들은 여러 개의 서브 타스크들로 분할되어지고 그들의 실시간 특성들에 따라 병렬로 실행되지만, 이러한 서브 타스크들의 마감시간 분실을 최소화하면서 타스크 마감시간을 서브 타스크에 할당하는 최적의 해를 얻기란 어렵다. 본 논문에서는 주기적 타스크들의 통신시간과 수행시간을 이용해서 각 서브 타스크들의 속성에 따라 마감시간을 할당하는 알고리즘을 제시한다. 또한, 처리기들간의 통신시간을 고려한 처리기 사상 알고리즘과 서브 타스크들간의 통신시간을 개선하기 위해 동일한 처리기에 할당하는 효율적인 중복 알고리즘을 제시한다 결과적으로 FUTD(Fully connected, Unbounded Task Duplication) 알고리즘에 효율적인 실시간 특성을 적용함으로써 IPC(Inter-Processor Communication) 시간을 줄이고 유휴 처리기를 이용해서 평균 처리기 이용률을 개선하였다

  • PDF