Duplication Scheduling of Periodic Tasks Based on
Precedence Constraints and Commnunication
Costs in Distributed Real-Time Systems

Mi-Kyoung Park’ and Chang-Soo Kim"

ABSTRACT

Paralle] tasks in distributed real-time systems can be divided into several subtasks and be executed
in parallel according to their real-time attributes. But, it is difficult to gain the optimal solution which
is to allocate a tasks deadline into the subtasks deadline while minimizing the subtasks deadline miss.
In this paper, we propose the algorithm that allocates deadlines into each subtask, according to the
attributes of each subtask(i.e. using communication time and execution time to periodic tasks). Also, we
suggest a processor mapping algorithm that considers the communication time among the processors
and the effective duplication algorithm which is allocated to the identical processor for the purpose of
improving the communication time between the subtasks. We can obtain a result that reduces IPC
(Inter-Processor Communication) time and uses the idle processor through applying effective real-time
attributes to FUTD(Fully connected, Unbounded Task Duplication) algorithms. As a result, we can improve
the average processor utilization.

A AAZE A L"oll4 SAESe SAHES
I3 F71H = E

2 o

B4 AAZE A2HAAN BT EL e HH g2ags $EHIX a5 AXT EAEA
mel HEE APHA o) ME eI EY vhgA L £4S HAZSEA BT vpAIHE AR
B2 @3sls 3o)8 4 oHY. B =RdME FU)4 Bl23 59 FAANLH SPATE
o] & 2zt ME el2A5e £Ad] ni} npAAE dFEe GuES AAFD T, M5
EAANE 1A 2] A @uelEH B A3 E57H) BAAE NS 98 TYd A7)
AFss E840 FB dudEHg AAgc Ao Z FUTDFully connected, Unbounded Task
Duplication) @8] &0} £& 32 AAL 54 FE3g e 24 IPClnter-Processor Communication) A1t
£ Zoln FF AY7IE oL HFE A)EES MY}

1. Introduction

Recently, due to the development of computer
networking technologies in various fields of study,
a lot of research has focused on the distribution

" Rt sm ARALES WAy

" RAYsa AFEEEN D FRR Rap

system. The resources or the data in other nodes
can be used for the distribution systems, and the
performance and the reliability of the system can
be improved by using a large number of processors
[16].

The fundamental characteristics that real-time

systems offer are not only the logical correctness

Duplication Scheduling of Periodic Tasks Based on Precedence Constraints and Commnunication Costs in Distributed Real-Time Systems 379

but also the exact results in a given time. The basic
requirements real-time systems should show are
not only a satisfying improvement of the system
operation, but also how the tasks and the resources
are effeectively scheduled in the proposed system
[14].

In this paper, in consideration of the communi-
cation time and the execution time of each subtask,
the deadlines are assigned according to the at-
tributes of the subtasks, and we propose the proc~
essor mapping algorithm without the duplication of
subtasks and the effective duplication algorithm
based on the algorithms[3,18].

The rest of this paper is organized as follows.
In section 2, related research will be discussed. In
Section 3, the task and system model will be
assumed. In Section 4, the deadline assignment
algorithm of the subtask, whose periodic charac-
teristics are taken into consideration, will be sug-
gested. In Section 5, the duplication allocation al-
gorithm and the non-duplication allocation algo-—
rithm will be proposed. In Section 6, the paper will

be concluded.

2. Related Work

Generally, a task is divided into several subtasks
for parallel processing in distributed and parallel
real-time systems. The existing researches are only
considered to the arrival time and the execution
time for the parameters related to the deadlines
(1,2,4]. There are the effective DIV-x and EQF
methods for minimizing the subtasks deadline miss
on the parallel and continuous execution [1,2]. Main
problem of these methods is no considering the total
states to the execution requirements of the sub-
tasks and the communication time between them.
Also, they do not consider the complicated states
of the subtasks executed in parallel.

In the duplicate scheduling method, in the case
where several nodes are linked like in the distrib-
uted system, a task can be allocated repeatedly to

several processors to reduce the communication
time of the tasks which require a mutual coop-
eration operation[19]. And let us refer to the du-
plication algorithms in the recent list scheduling
field. The SDBS(Search and Duplication Based
Scheduling) algorithm is proposed because it can
make a task schedule with a processor through a
method which can complete the execution in the
shortest time in terms of the variable commu-
nication time[15]. The DFRN(Duplication First and
Reduction Next) method is suggested, which brings
about the decrease of the total execution time and
the increase of the processor utilization rate in
terms of the precedence relation and the task com-
munication time[3]. The FUTD(Fully connected
and Unbounded Task Duplication) method is sug—
gested, which improves the time-complexity of the
DEFRN method [18]. In this paper we will be applied
to the duplication method for the real-time task,
because they have the merit of being the easiest
to implement[3,18].

In this paper, the EDFRN(Effective Duplication
First and Reduction Next), the duplication algo-
rithm of the effective real-time task will be sug-
gested, because it is expected to improve processor
utilization and reduce the inter-processor com-
munication time and task completion time.

3. A Task Model and System Environment

In this Section, we suggest the task model
where more than two tasks with different periods
can be executed in parallel, and will define the
distributed system environment briefly.

3.1 A Task model

Generally, work in real-time systems consists
of periodic and non-periodic tasks. Periodic tasks
are the basic tasks that are executed at regular
intervals. On the other hand non—periodic tasks are
the transient tasks that come optionally.

380 REIDICIOIES] ==X H2d H4=(1999. 12)

Because most tasks in the real-time system are
executed regularly, we will not include the non-
periodic tasks in this paper. The attributes offered
in the real-time systems are known basically before
the execution [13]. The most important parameters
in the periodic tasks are period, computation time
and deadline etc[5,6,8,9]. Unlike the tasks with the
soft deadlines, if those with the hard deadlines
cannot be completed within a specified period of
time, the entire system will fail. So they have to
be completed in time.

The topology of distributed system is fully con

nected into number of m nodes. Let the set of
processors be P={P,|P, P, .. P,}andthe n
tasks which are executed with m processors be
T={T, T, Ty, -, T,}. Then, T Arz;, t;s1,
-, 7} can consists of £ subtasks. The notation
t;=1I[r;, 15, ,1,] stands for number of p
subtasks which can be execute in serial. And the
subtasks 7;(7 > 1) can not start to be executed before
r;—1. Also, the notation z;=[z; ll rz Il 1l 7,]
represents the number of ¢ subtasks which can
be executed in parallel. If all subtasks of T3
complete the execution, then the task T, execution
will be considered to be completed. Formally, we
define the classes of serial-parallel subtasks by the
following rules:

ST; . A single subtask which a predecessor and
a successor do not exist in a periodic task
is called a simple subtask.

SST: 1 SST;={rdz,, tisy, -, e}, 0:(1<i<h) is

called serial subtasks.

PST; : PST;={r; Wy It -l 7}, ri(1<i<q) is

called parallel subtasks.

The task T, of this paper has the following
attributes:

ar(T;) = the arrival time of T,
di(T;) = the deadline of T,
P(T;) = the period of T,

ex(T;) = the execution time of T,

comm(t;_,, r;) = the communication time

between r;-; and r,.

In this paper, three periodic tasks with each
different unique periods are extended to various
subtasks in range of the least common multiple
(LCM) of task periods to construct DAG(Direct
Acyclic Graph) using serial-parallel subtasks
[5,79,10]. When periodic tasks are executed by
execution time and communication time as the
input, the task model can be presented in Figure
1. To be structure, a subtask is represented as a
circle, the character in the center portion of the
circle represents the subtask identifier(id), the
number in the right portion of the circle represents
the execution time for the subtask and the number
on the edge represents the communication time
from the subtask to the lower subtask.

Fig 1. Periodic tasks T3, T2, T1(period 60,120,80)

Two pseudo nodes R and T are added to form an
extended task graph in length of LCM in Figure 2.

Fig 2. A Task graph extended to LCM length

Duplication Scheduling of Periodic Tasks Based on Precedence Constraints and Commnunication Costs in Distributed Real-Time Systems 381

To simplify the notation, we would like to define
the identifier(id) of subtasks to be the arbitrary
English character which is identical with the

existing papersf17].

3.2 System environment

In this paper, we suppose that the system is the
one which consists of the m number of func-
tionally homogeneous processors and that lots of
processors are connected via a communication
network. Then the systems will be executed
according to their requested task order, and the
processors are not restricted in regard to the
duplication scheduling algorithm[12]. The attributes
of the presented graph, the precedent conditions for
the execution and the time constraints are followed
to the [5,7,9,10,17].

3.3 Subtask Deadline Assignment

Assumptionally, unless the subtask’s deadline is
defined, the deadline of the subtask is equal to that
of the entire task[10]. As the first step to find out
the deadline of subtasks, we will use the time
constraints of the task graph that are extended to
the LCM length shown in Figure 2. The EST(z;, ;)
value of the jth instance of each r, is the earliest
possible starting time of the subtask r;, after the
execution time r;_;, and the communication time
between r;_;, and «r;, has passed. So, the
EST(r;,;) value is the sum total of the
EST(z;_y,;), the execution time ex(z;_;;), and
the communication time comm(zr;_, ;, z; ;).

EST(r;;) = EST(r;-y,;) + ex(r,-1 ;)

+ comm(Ti—1,7» Z',',,')

1)

As the result of finding out the EST(«z;, ;) value
of the subtasks applied to formula (1), the ES7T
value means the maximum value from each of the
EST values, and is computed for the subtasks with
more than one predecessor.

First, the ESD(Effective Serial subtask Dead-

line) allocation strategy is to multiply the total
processor idle time left from the current subtask
to the last subtask by the processor idle time
allocated to an arbitrary subtask of the entire
deadline. Then add the value EST and ex(the
execution time). And then we can get a effective
deadline concerning the communication time and

the execution time in formula (2).

dl(z; ;)= [EST(z;;) +ex(t;;)+
[(deadiine(T,) ~EST(x,,) = & exlry9)x ex(x,,)] Zrex(re) 1
®) ® ‘ 2
)
(D The total processor idle time assigned to

the r,

@ The left time of processor idle time
@ The rate of the execution time

In the extended graph in Figure 2, the serial
subtask’s deadline in the first instance of the :th
subtasks of T is computed as follows: dl(2)=50,
dl(3) =55, di(4) =70, dI(19) =48, di(20) =73, di(21)=
75, di(22)=75, di(23)=110, dI(24)=110.

Let’s look at the another strategy called EPD
(Effective Parallel subtask Deadline) allocation which
can be executed in parallel at any level of the task
graph. The deadline of the r; , of the parallel sub-
task can be calculated as follows: first, subtract
EST from the deadlines of all the tasks, and divide
the value by the number of parallel executing
subtasks.

dlr; ;)= [[deadline(T;)— EST(r;)1/ 3)

the number of subtask+ EST(z; ;)1

According to formula(3), the deadline of the
parallel subtasks 1, 35, 36 are as follows: dl(1)=34,
dl(35)=41, di(36)=41. If there is more than one
deadline like join or fork subtasks, then we choose
the largest of all deadlines computed. At the second
instance, as EST(r;;, t;;4+1) of the g is equal to
EST(z;y) plus p(T;), the value of the EST(j,2)
is set to 80 and then the deadline is computed. The
SDA(Subtask Deadline Assignment) algorithm in-

382 ZEDICIOIES ==X M2A M4%(1999. 12)

cluding the ESD and the EPD allocation strategies
which were described previously is shown in
Figure 3.

SDA _algorithm

(input X ‘task; Dideadline)
begin
if X is a simple subtask then //ST;

if X is a root then
dI(X) :=start_time (X) + ex(X)
else dX):=D
else if X =[X;, X;;,,~.X,] then //SST:
assign deadline to task X,
according to the ESD strategy.
from equation(2)//
SDA (X;, di(X;));
else if X = (X, 1 X,0-X,] then//PST;
for 1 =1to0 =
assign deadline to X,

according to the EPD strategy.
/from equation(3)//
SDA (X, di(X}))
endif
end

Fig 3. SDA algorithm formed with ESD and EPD

3.4 Processor allocation algorithm

In this section we propose the processor allo—
cation algorithm based on a heuristic method, using
the parameters of a real-time timing character—
istics that were previously computed. The principle
of the allocation, first of all, is to assign the ready
tasks in the sequence of the priority queue to the
processor.

3.4.1 Non-duplication allocation algorithm

Figure 4 shows the allocation algorithm that
considers only the time characteristics without
duplication, and we suppose the starting time of
all processors is set to zero, and the id of allocated
subtask is set to nil.

Table 1. The information status of subtask allocation

The status information of each processor is
starting time of the allocated subtasks in any
processor, finish time which is the sum of start
time and execution time and currently id of allo-
cated subtasks. The status information of task
allocation for processor P, is listed in Table 1.

The result allocated to the processors with
regard to the time characteristics of the subtasks
is shown in Figure 5 As a result of the pre-
allocation of each subtask to the processor, each
processor utilization U, is computed by equation
(4) with the sum of the execution time and the rate
of the LCM in the processor P,

Processor Utilization(U;) =

[24 6(z)] (4)
_lg;__ for Pi (]'zl’z, ,m)

where, ¢(r;) is the execution time of each
subtask z, which is assigned to a processor. The
periods of task T, T,, T are 60, 120, 80 time unit
respectively. When the system is extended, the
total time unit of task periods within one sched-
uling frame will be 240 time unit. The detailed re—
sults for the non—duplication allocation are shown
in Figure 5. For example, the U, for the processor
P, case is

[0ty 36, T, T, Ts, 71, T, To10 T, T, Tizs Tiss Ti 1))

240

for P, = -2 —.8375

After the tasks are scheduled, we can obtain the
processor utilizations of the eight processors in
Figure 5 as follows : U; =0.8375, U, =0.8916 , Us

=0.3916 , U, =0.4708 , Us =0.2958 , Us =0.23333 ,
U, =0.0458 , Uz =0.1208. Each of the dark areas

P, | Status information

P, | start_time 0 | 18| 42 | 60

80 | 97 | 120 | 135|143 | 152 | 160 | 177 | 193 | 202

finish_time 18§ 42 | 60 | 78

97 | 111 | 135|143 | 152} 160 | 177 | 193 | 202 | 212

Ts 77 Tos | Tr | Ts | T | Tz | Tws | Tae | Tt

id of allocated subtasks T | T3s | T37 | T3s

Duplication Scheduling of Periodic Tasks Based on Precedence Constraints and Commnunication Costs in Distributed Real-Time Systems 383

Non-duplication algorithm

Process Information{

struct
proc_id; //id of processor
subtask_id; //id of subtask which is assigned to
finish_time; //finish time of any subtask
start_time; //start time of any subtask
}

Process Information Do_subtask //information for tasks

priority_queue_subtask[il{
EST(Earliest start_time of any subtasks)
ex(execution time)

pred(predecessor)
comm(communication time from predecessor to sucessor)
}

proc_start_timef] //start_time of each processor

for(i=0, j=0; i<max_num; i++)}{
//in case of the predecessors are not exist
if(subtask[i].pred==nil){
Do_subtasklj].subtask_id=i;
//the most short star_time in all processors in use will be
selected assigned into min_proc_start_time, id is assigned
into min_proc_id
Do_subtask[j].finish_time=min_proc_start_time+subtask{il.ex;
Do_subtaskljl.proc_id = min_proc_id; }

else(//in case of the predecessors are exist
//subtask[il.pred is found in Do_subtask[] array
available start_time and to search for pre.finish_time and pred.proc_id
min_proc_start_time=o0
min_proc_id=nil
for(k=0; k<allocated processor number+1; k++)

{

if(k==pred.proc_id) //communication time is zero
start_enable_time=proc[k].start_time; }
elsef //there exists communication time

if(proc_start_time>=(pred_finish_time+subtask[i].comm)
start_enable_time=proclkl.start_time;
else

)

start_enable_time=pred_finish_time+subtaskl[il.comm;

}
if(min_proc_start_time>start_enable_time){

min_proc_start_time=start_enable_time;

min_proc_id=k; }
Do_subtasklil.subtask_id=subtask[il.id;
Do_subtask[i].start_time=min_proc_start_time;
Do_subtaskl[il.finish_time=min_proc_start_time+subtask[il.ex;
Do_subtasklil.proc_id=min_proc_id;

Fig 4. Non-duplication allocation algorithm

in Figure 5 indicate the IPC(Inter Processor 3.4.2 Allocation algorithm allowing duplica-

Communication)time, and we can see where the tion
overall tasks violate the deadline of the three time

units.

The task duplication in the existing real-time

system was considered to the deadline of each

384 2EDICICES =2A H2H R4=(1999.

12)

10

11

12} 13| 14

15] 16] 171 18] 19| 20| 21| 22| 23| 24] 25] 26] 27| 28] 29] 30

3

62

33

63

34

64

35

65

36

37

38

39

40

42

43

45| 46] 47| 48| 49§ 50} 51] 52| 53| 54| 55| S6| 671 58} 59] 60

SRR SRR

66

67

68

69

70

72

73

74

3 &3 5 RSN
75| 76| 77| 78] 79| 80| 81] 82§ 83| 84} 85| 86{ 87| 88] 89| 90|

S

92

93

94

95

96

97

98

99

100

101

102

103

104

1051106 }10711081109]110f111]112]113)114]115]116]117]118|t18}120,

130

133

134

135)1361137|138|139]140[141]142]143]1441145]146]147]148[149}150

151

152

160

161

163

164

165{1661167]1681169]t70ft71]172|17a]174]175]176]177[178]179}180

.|

182

185

189

190

193

194

1951196 [197]1981199{200§201 |202 1203 {204 {205 1206 1207 |208 209] 210

212

213

214

215

216

217

218

219

220

221

222

223

224

225|226 [227 1228 122912301231 }232 J233 | 234 {235 236 1237 | 238|239 | 240,

241

242

243

Fig 5. Allocated result applied to non-duplication allocation

tasks [9,17], but we considered the duplication to
be an improvement of the processor utilization of
the serial~parallel subtasks. We allocated the tasks
to the processors by using the following EDFRN

(Effective Duplication Frist and Reduction Next)
method, and then compared it with the existing
method. The computed EST value is used to decide
the priority of each subtasks. To be describe the

Duplication Scheduling of Periodic Tasks Based on Precedence Constraints and Commnunication Costs in Distributed Real-Time Systems 385

.meaning of the variables used in that algorithm,
BC(Bottom-up Computation) is the amount of the
communication time and the execution time from
the end task to r,. CIP is the critical immediate
parent that has the largest MAT(Message Arriving
Time), which is the completion time plus com-
munication time from each immediate parent. ECT
is the earliest completion time r, which can carry
out. IP is the immediate parent. JT is the join task
which has more than one immediate parents. LT
is the most recent task assigned to each processor
Pi. MAT is the message arrival time from z,_; to

7, . Pa is the processor. P. is the critical processor
that CIP is assigned to. Py is the idle time processor
without the task allocation at the point in time when
the arbitrary task is scheduled. And P, expresses

the new processors respectively.

1) FUTD algorithm

In the algorithm of the FUTD(Fully connected,
Unbounded Task Duplication) in Figure 6, first of
all, we cluster the task by using linear clustering,
and BC value is used to determine the priority of
the tasks. The tasks in the cluster are inserted to
the ready queue when they are ready. The se-
quence of inserts are done in descending order
according to their computed BC value, and the
processor number which is allocated to the task
correspond to the cluster number. Then we start
assigning the tasks to the processors, and continue
to execute until the ready queue is empty.

Getting the BC value, which is the priority of
each task, and assigning the subtasks to the

FUTD algorithm

if 7, is not a Join task
if not scheduled IP onto P, and unused P,
copy the scheduled up to IP onto Pa
. /P, is corresponding the processor C,
endif
schedule r, to Pa
else try_duplication(Pa,)
schedule 7, to Pa
endif

Fig 6. FUTD Algorithm

processor by applying the FUTD to it, we can
obtain the processor utilizations of the 17

processors as follows: U, =1, U, =0.4416 , U3 =

0.583, Uy =0.167, Us =0.167, U;=0.15, U; =

0.225, Usg=0.225, Uy =0.225, U,y =0.138, Uy, =
0.138, Uy, =0.129, U;3=0.13, U, =0.171, Us =
0.179, Uy =0.171, Uy;; =0.179. Concerning the
completion time of executing the entire task, the
execution is completed in 240 time units due to the
improved the deadline miss before the duplication.
23 time units of IPC time decreases, but if im-
mediate parents are not LT, it has the demerits that
the more the task graph is deep, the more the
number of the processors increases because the
subtasks continue to be allocated to the new
processors.

2) EDFRN algorithm
The EDFRN(Effective Duplication First and
Reduction Next) algorithm in Figure 7 considers
the new processor after considering the descending
order of the idle time processor at the point of time
when the subtask is assigned to the current target

Processor.

EDFRN algorithm
initialize() //build a priority queue using EST//
for each subtask r, in the queue //in FIFO manner//
if 7, is not a Join task //r, has only one IP//
identify the IP
if the IP is LT
schedule z, to the P having the IP
else if there exists having the Py
copy the schedule up to the IP onto Py
schedule 7, to Py
else copy the schedule up to the IP onto P,
schedule ¢, to P,

endif
else //if ¢, is a Join task
identify CIP and Pc
if CIP is LT
DFRN(P. ,z,) //apply DFRN to P,

schedule r, to the P. having the CIP
else //if CIP is not LT
copy the schedule up to CIP onto P,

DFRN(P, .z,) //apply DFRN to P,
schedule r, to the P,
endif
endif

endfor

Fig 7. EDFRN Algorithm

386 YEIDICIOEHE =8N K2#H N45(1999. 12)

The EDFRN algorithm is a method of using the the interprocessor communication time reduces,
processor effectively through minimizing number and the processor utilization increases.
of processors, which is the demerits of FUTD. As In Figure 8, each subtask is assigned to the

a result of executed by EDFRN algorithm, the processors by applying EDFRN. From the result
deadline miss of the entire task does not happen, we obtained the 9 processors utilization as follows

9]10] 11412 13| 14§15} 16] 17] 18] 19} 20 21§ 22| 23| 24| 25] 26] 27} 28] 29| 30

T S 59

53] 54| 551 56| 57} 58] 59| 60

36] 371 381 39| 40| 41| 42| 43| 44| 45] 46] 47

25

[T E : 20" e .
76] 77] 78] 79] 8o} 81] 82] 83] 84] 85

61] 62] 63| 64] 65] 66] 67| 68| 69] 70

911921 93] 94] 95t 96] 97| 98] g9fioolio1fro2]103 104105106107]108f10910t1tfi120113]114]115]116]317]118]118}120

h21h22ho3h2ahasi26{127]1284129]130§131§132]133]134[135]136[137]138]139[140[1411142]143{144]1451{146]1471148]149150

Pé 4 2e

1511152153054 1551561157 [158{159]160 164 1651661671681 69170171 h72|173]174

PS5 R SN S B s 8 5 3

ha1]s2fisalisaliss|iaefis7f188]189hool191192{193]194]195]196]197 198199 P00 201 [202]203 [204 [205 [206 07 |208 |209]210

PS5 iy 2 5 aES

PiipiepispiaRiskiel217]218]219 20221 p22223f24 s 226 P27 228 2o acat pa2]2as[234]23s 236 a7 [238 239240
P1 3 5 AR : SEes 44

oo

Fig 8. Allocated result applied to EDFRN algorithm

Duplication Scheduling of Periodic Tasks Based on Precedence Constraints and Commnunication Costs in Distributed Real-Time Systems

U=1,0,=0.73,U;=0.6,U,=0.52, U;=
0.645, Us =0.254 , U; =0.1416 , Uy =0.1375 , Uy
=0.15. The execution completion time of the
entire task is the same as the FUTD, but the IPC
time reduce to 35 time units. Finally, compared
with non-duplication method, EDFRN method did
not violate the deadline in the execution completion
time of the entire task, and reduced the IPC time
of B8 time units.

4. Performance evaluation

To measure the assignment performance of the
proposed subtask deadline assignment algorithm
and the duplication allocation algorithm, like the
existing paper{17], we supposed that the task graph
had 1~ 3 periodic tasks with different periods, 4~
10 subtasks, and carried out the simulation so that
the communication time between each subtask of
the 1~ 10 time units and the execution time of the
1~25 time units were applied. The results of the
allocations before and after duplication executions
allowed considerable improvements in the proc-
essor utilization as shown in the Table 2. In case
of FUTD, the average processor utilization rate
before the duplication showed a decrease of 19,
but the proposed method showed an increase of
109%. Also, the executing completion time of the
entire task was identical with that of FUTD, but
IPC time was less than that of FUTD.

Figure 9, 10 shows that the EDFRN improved
the average processor utilization and the entire

387

task deadline miss, compared with those before and

after duplication.

Processor Utilization

2 Norv- duplcation 0.89 0.045 0.845 0.41
el FuTD 1 0.129 0.871 0.26
[REoern 1 0.137 0.863 0.46¢

Fig 9. The processor utilization before and after
duplication

Total Task Conpletion Time

[Tofal Task
Completion Time

Fig 10. The Entire task executing completion time
before and after duplication

Figure 11 shows that the proposed EDFRN re-

duces the 58 time units of the IPC time before and
after duplication.

5. Conclusion

This paper focused on the problem of subtask

Table 2. Comparison allocation result before and after duplication.

Before After Duplication
Duplication FUTD Proposed
Processor Heaviest Load @ 0.39 1.0 1.0

Utilization Lightest Load @ 0.045 0.129 0.137

®-® 0.845 0.871 0.863

Average Load 0.41 0.26 0.464
Total Task Completion Time 243 time unit 240 time unit 240 time unit
IPC Time 64 time unit 41 time unit 6 time unit

388 QEIDICIOSHE =2A M2 H45(1999. 12)

IPC Time
100
501
0
Non- | FUTD |EDFRN
[cipc Time | 64 41 6

Fig 11. The IPC time before and after duplication

deadline assignment in a distributed real-time
system. We transformed the task graph extended
in LCM length on the basis of the EST value of
the real-time timing characteristics. We proposed
the effective deadline assignment algorithm consid—
ering the communication time and the execution
time between subtasks according to their types,
minimized the deadline miss rate of subtasks. Also,
we proposed the task duplication assignment algo—
rithm which allowed the real-time timing char-
acteristic of the existing duplication method to
obtain a faster execution completion time by mini-
mizing the communication time between the proc—
€ssors.

As the result of the assignments we could, re-
duce the IPC time by applying the real-time timing
characteristics to FUTD in which the duplication
stage was constructed with the 2 stages, improve
the average processor utilization and decrease the
processor utilization deviation by using the idle time
processors more effectively. In future research, we
will focus on the development of a more compre—
hensive duplication method which considers the
non-periodic tasks and its software tools along
with the simulation environment.

References

[1]1 Ben Kao and Hector Garcia-Molina, “Deadline
Assignment in a Distributed Soft Real-Time
System”, TR, Department of Computer Science,
University of Stanford at stanford, April 1993.

[2] Ben Kao and Hector Garcia-Molina, “Subtask
Deadline Assignmement for Complex Distributed
Soft Real-Time tasks”, The 14th ICDCS, Poznam,
Poland, pp.172-181, June 1994.

[3] Gyung-Leen Park, Behrooz Shirazi and Jeff
Marquis, “DFRN: A New Approach for Duplica-
tion Based Scheduling for Distributed Memory
Multiprocessor Systems”, In the Proceedings of
11th International Parallel Processing Symposium,
pp.157-166, 1997.

[41 Riccardo Bettati, “End-To-End Scheduling to Meet
Deadlines in Distributed Systems”, PhD thesis,
University of Illinois., 1994.

[5] Krithi Ramamritham, “Allocation and Scheduling
of Precedence-Related Periodic Tasks”, [EEE Trans-
actions on Parallel and Distributed Systems, Vol.
6, No. 4, pp.412-420, April 1995.

[61 Mark H. Klein, John P. Lehoczky, and Ragunarithan
Rajkumar, “Rate-Monotonic Analysis for Real-Time
Industrial Computing”, IEEE Transactions on Com-
puter, pp.24-32, January 1994.

[7] Krithi Ramamritham, “Allocation and Scheduling

of Complex Periodic Tasks”, IEEE 10th Interna-

tional Conference on Distributed Computing Sys—

tems, pp.108-115, 1990.

Rhan Ha and Jane W.S. Liu, “Validating Timing

Constraints in Multiprocessor and Distributed

Real-Time Systems”, In the Proceedings of I[EEE

14th International Conference on Distributed Com-

puting Systems, 1994.

[9] Sheng-Tzong Cheng and Ashok K. Agrawala,
“Allocation and Scheduling of Real-Time Periodic
Tasks with Relative Timing Constraints”, TR,

[8

—

Department of Computer Science, University of
Maryland at College Park, January 1995.

[10] Stefan Ronngren and Behrooz A. Shirazi, “Static
Multiprocessor Scheduling of Periodic Real-Time
Tasks with Precedence Constraints and Communi—
cation Costs”, Proceedings of the 28th Annual
Hawaii International Conference on System Sciences,
pp.143-152, 1995,

[11] John A. Stankovic, “Real-Time Computng”, TR,
Department of Computer Science, University of
Massachusetts at Ambherst, April 1992.

[12] Jose Javier Gutierrez Garcia and Michael Gonzalez
Harbour, “Optimized Priority Assignment for Tasks

Duplication Scheduling of Periodic Tasks Based on Precedence Constraints and Commnunication Costs in Distributed Real-Time Systems

[13]

[14]

[15]

[16]

[17]

(18]

and Messages in Distributed hard real-time sys-—
tems”, IEEE pp.124-132, 1995.

Chao-Ju Hou and Kang G. Shin, “Replication and
Allocation of Task Modules in Distributed Real-
Time Systems,” IEEE 24th Annual Int’l Sympo-
sium on Fault-tolerant Computing, pp.26-35,
Austin, Texas, June 15-17, 1994. An enhanced
version has seen submitted to IEEE Trans. on
Parallel and Distributed Systems as a technical
brief, July 1995.

I. Ahmad, Yu-Kwong Kwok, “A new approach to
scheduling parallel programs using task duplication,”
Int’l Conf. on Parallel Processing, pp.1147-1151,
1994.

S. Darbha and D.P.Agrawal, “SDBS: A task du-
plication based optimal scheduling algorithm,” Proc.
of Scalable High Performance Computing Conf.,
pp.756-763, May 1994.

Joo-Man Kim, Chee-Hang Park and Cheol-Hoon
Lee, “An Efficient Task Assignment Algorithm in
Distributed System,” The Transactions of the
Korea Information Processing Society, Vol. 5, No
2, Feb. 1998.

Sheng-Tzong Cheng, Shyh-In Hwang and Ashok
K. Agrawala, “Mission-Oriented Replication of
Periodic Tasks in Real-Time Distributed Systems,”
Technical Report CS-TR-3256, Department of
Computer Science, University of Maryland, College
Park, 1994.

Kyung-Hoon Jeong, “A Study on the Task Du-
plication Scheduling Algorithms in Distributed
and Parallel Systems”, M.S., thesis, Department

389

of Computer Science, National University of
Pukyong, Feb. 1998.

[19]1 Min-Hwan Jo and Jeong-Yeon Huh, “Optimal
Task Duplication Scheduling with a Variable Com-
munication Time,” The Korea Information Proc—

essing Society, Spring, 1998.

s o]

19963 = idn AAALE
8t} (0] A}

1998 B-AU s w A PR e
(18t AL

19993 ~ & A 7 o 3t A=A
ket upalag

BAl o} 1 BAEAT, A7

4 & #
19843 A3 AU § Harsta &
A(ZEA
19863 FJfstaw Habehy £
(o) S AL
1991d F4distm itete &
A(F g}
1992~1996. 7 ¥4 Fabdigtm
Axetd A7} - 20S4
1994~1996 ZHFAHATY AYaTd
19973 ©l= UCSB AAMsta} whEuss
1996~ A HAvstn AFE e v|Y)o]F8tR Ragp
DA FoF: B EA], B4R GPS/GIS 34, ¢l
B4 DB 5

