• Title/Summary/Keyword: full-wave analysis

Search Result 212, Processing Time 0.026 seconds

Study on th Wave-Pattern Analysis by Longitudinal Cut Method (Longitudinal Cut 파형해석의 응용을 위한 특성연구)

  • S.H.,Kang;Y.G.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.18 no.1
    • /
    • pp.9-18
    • /
    • 1981
  • The wave-pattern analysis has been one of important research tools in the towing tank, and applied for hull form design. The longitudinal-cut method of Newman and Sharma is adopted in KRIS deep towing tank. Instrumentations and data acquisition systems are developed for that. Local effects and truncation effects are estimated by using calculated wave patterns of simple source distributions. Wigley model of 2m is used to check the accuracy of the whole system. Cut positions and truncation points are changed to investigate characteristics of the wave-pattern analysis. Coefficients of wave-pattern resistance are low-estimated in comparison with those of Maruo and Ikehata. The general quality of the system is very good, but some more efforts to increase the accuracy are required. Two full-form models(one basic form, the other with bulbous bow) are tested to show high application-possibilities of the wave-pattern analysis for the hull form design.

  • PDF

Global performances of a semi-submersible 5MW wind-turbine including second-order wave-diffraction effects

  • Kim, H.C.;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • v.5 no.3
    • /
    • pp.139-160
    • /
    • 2015
  • The global performance of the 5MW OC4 semisubmersible floating wind turbine in random waves was numerically simulated by using the turbine-floater-mooring fully coupled and time-domain dynamic analysis program FAST-CHARM3D. There have been many papers regarding floating offshore wind turbines but the effects of second-order wave-body interactions on their global performance have rarely been studied. The second-order wave forces are actually small compared to the first-order wave forces, but its effect cannot be ignored when the natural frequencies of a floating system are outside the wave-frequency range. In the case of semi-submersible platform, second-order difference-frequency wave-diffraction forces and moments become important since surge/sway and pitch/roll natural frequencies are lower than those of typical incident waves. The computational effort related to the full second-order diffraction calculation is typically very heavy, so in many cases, the simplified approach called Newman's approximation or first-order-wave-force-only are used. However, it needs to be justified against more complete solutions with full QTF (quadratic transfer function), which is a main subject of the present study. The numerically simulated results for the 5MW OC4 semisubmersible floating wind turbine by FAST-CHARM3D are also extensively compared with the DeepCWind model test results by Technip/NREL/UMaine. The predicted motions and mooring tensions for two white-noise input-wave spectra agree well against the measure values. In this paper, the numerical static-offset and free-decay tests are also conducted to verify the system stiffness, damping, and natural frequencies against the experimental results. They also agree well to verify that the dynamic system modeling is correct to the details. The performance of the simplified approaches instead of using the full QTF are also tested.

Full-Wave Analysis of Microwave Amplifiers with Nonlinear Device by the FDTD Algorithm

  • Kang, Hee-Jin;Park, Jae-Hoon
    • Journal of electromagnetic engineering and science
    • /
    • v.2 no.2
    • /
    • pp.81-86
    • /
    • 2002
  • This paper presents the full wave analysis of microwave circuits with nonlinear device using the finite difference time domain method. The equivalent current source is used to model nonlinear device and all the electric field components at the nonlinear device are updated by FDTD algorithm. The currents and voltages of nonlinear device are calculated by the state equations and iteration method. To validate the proposed method, the S-parameters of NEC NE72089 MESFET in various conditions are analyzed and the results are compared with those of the ADS. The proposed method is applied to the analysis of a microwave amplifier, which includes NEC NE72089 MESFET. The analysis results obtained by the present method show good agreement with those of the ADS.

Wave Forces Acting on Large Vertical Circular Cylinder and Consequent Wave Transformations by Full-Nonlinear Analysis Method after Wave Breaking (강비선형해석법에 의한 대형연직원주구조물에 작용하는 쇄파후의 파력 및 파랑변형)

  • Lee, Kwang-Ho;Shin, Dong-Hoon;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.4
    • /
    • pp.401-412
    • /
    • 2008
  • Simulations of three-dimensional numerical wave tank are performed to investigate wave force acting on a large cylindrical structure and consequent wave deformation, which are induced by bore after breaking waves. The numerical model is based on the three-dimensional Navier-Stokes equations with a finite-difference method combined with a volume of fluid(VOF) method, which is capable of tracking the complex free surface, including wave breaking. In order to promote wave breaking of the incident wave, the approach slope was built seaward of the structure with a constant slope and a large cylindrical structure was installed on a flat bed. The incident waves were broken on the approach slope or flat bed by its wave height. In the present study, all waves acting on the large cylindrical structure were limited to breaking bore after wave breaking. The effects of the position of the structure and the incident wave height on the wave force and wave transformations were mainly investigated with the concern of wave breaking. Further, the relations between the variation of wave energy by wave propagation after wave breaking and wave force acting on the structure were discussed to give the understanding of the full-linear wave-structure interactions in three-dimensional wave fields.

A Study on the Radiated Emission from the DC Power-Bus for the PCB (PCB DC Power-Bus로부터의 전파 방사에 관한 연구)

  • Kahng, Sung-Tek
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.2 s.105
    • /
    • pp.148-151
    • /
    • 2006
  • The DC power-bus' resonance is frequently attributed to EMI sources in the PCBs. Subsequently, it will ruin the digital signal integrity within one system or between adjacent systems in the form of conducted or radiated emission. Hence, since it is of importance to examine the PCB's emission, this paper sheds a light on the radiated emission from the power-bus with regards to its resonance modes. A full-wave analysis method is used to calculate the impedance and radiated electric fields and is validated by physics and an EM analysis tool.

A study on the radiated emission from the DC power-bus for the PCB (PCB DC power-bus로부터의 전파방사에 관한 연구)

  • Kahng, Sung-Tek
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.149-152
    • /
    • 2005
  • The DC power-bus' resonance is frequently attributed to EMI sources in the PCBs. Subsequently, it will ruin the digital signal integrity within one system or between adjacent systems in the form of conducted or radiated emission. Hence, since it is of importance to examine the PCB's emission, this paper sheds a light on the radiated emission from the power-bus with regards to its resonance modes. A full-wave analysis method is used to calculate the impedance and radiated electric fields and is validated by physics and an EM analysis tool.

  • PDF

Design and Characterization of 3 dB Branch Type Directional Couplers using High-Tc Superconductors (고온초전도체를 이용한 가지 형태 3 dB 방향성 결합기 설계 및 특성해석)

  • Chung, Dong-Chul;Choi, Myoung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.116-119
    • /
    • 2010
  • In this work, we presented the characterization of 3 dB branch type directional couplers by using High-Tc superconducting thin films. To do this, we deposited YBCO superconducting thin films on MgO substrates by using rf-magnetron sputtering techniques. The designed center frequency was 408 MHz and the designed passband was 20 MHz. Also we designed 3 dB Power difference and $90^{\circ}$ of phase difference between port 3 and port 4. The even and odd mode analysis were used to characterize our directional couplers and em Sonnet (full wave analysis program) was utilized to the optimum design. We reported experimental results, including a center frequency, passband, half power characteristics and phase differences. We confirmed that experimental results were in good agreements with characterization by using full wave analysis program.

Time-Efficient SE(Shielding Effectiveness) Prediction Method for Electrically Large Cavity (전기적으로 큰 공진기의 시간효율적인 차단 효율 계산법)

  • Han, Jun-Yong;Jung, In-Hwan;Lee, Jae-Wook;Lee, Young-Seung;Park, Seung-Keun;Cho, Choon-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.3
    • /
    • pp.337-347
    • /
    • 2013
  • It is generally well-known that the inevitable high power electromagnetic wave affects the malfunction and disorder of electronic equipments and serious damages in electronic communication systems. Hence, it is necessary to take measures against high power electromagnetic(HPEM) wave for protecting electronic devices as well as human resources. The topological analysis based on Baum-Liu-Tesche(BLT) equation simplifying the moving path of electromagnetic and the observation points and Power Balance Method(PWB) employing statistical electromagnetic analysis are introduced to analyze relatively electrically large cavity with little time consumption. In addition to the PWB method, full wave results for cylindrical cavity with apertures and incident plane wave are presented for comparison with time-consumption rate according to the cavity size.

A boundary-volume integral equation method for the analysis of wave scattering

  • Touhei, Terumi
    • Coupled systems mechanics
    • /
    • v.1 no.2
    • /
    • pp.183-204
    • /
    • 2012
  • A method for the analysis of wave scattering in 3-D elastic full space is developed by means of the coupled boundary-volume integral equation, which takes into account the effects of both the boundary of inclusions and the uctuation of the wave field. The wavenumber domain formulation is used to construct the Krylov subspace by means of FFT. In order to achieve the wavenumber domain formulation, the boundary-volume integral equation is transformed into the volume integral equation. The formulation is also focused on this transform and its numerical implementation. Several numerical results clarify the accuracy and effectiveness of the present method for scattering analysis.

Prediction of Bow Flare Impact Pressure and Its Application to Ship Structure Design - Tanker and Bulk Carrier - (선수 플레어 충격압력 추정과 구조설계에의 응용 - 탱커와 산적화물선 -)

  • 김용직;신기석;신찬호;강점문;김만수;김성찬;오수관;임채환;김대헌
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.3
    • /
    • pp.22-28
    • /
    • 2003
  • In rough seas, bow-flare regions of the full ships (tanker and bulk carrier) are subiect to high impact pressures due to the on-coming breaking waves. And many ships suffer structural damages in that region, even though they were built under the bow structure strengthening rules of the ship classes. So, a new design method for bow-flare structure is highly required. In this paper, a new prediction method of the bow-flare impact pressure (in terms of equivalent static pressure) acting on the full ships' bow is presented. This method is based on the 6 full ships' damage analysis and the breaking wave impact mechanism. Calculation results of the bow-flare impact pressure and the shell plate thickness are shown and discussed. Through the example calculations, it was found that the present method is useful for the structure design of the full ships' bow.