• Title/Summary/Keyword: full-length cDNA

Search Result 345, Processing Time 0.038 seconds

Isolation and Characterization of a Theta Glutathione S-transferase Gene from Panax ginseng Meyer

  • Kim, Yu-Jin;Lee, Ok-Ran;Lee, Sung-Young;Kim, Kyung-Tack;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.36 no.4
    • /
    • pp.449-460
    • /
    • 2012
  • Plants have versatile detoxification systems to encounter the phytotoxicity of the wide range of natural and synthetic compounds present in the environment. Glutathione S-transferase (GST) is an enzyme that detoxifies natural and exogenous toxic compounds by conjugation with glutathione (GSH). Recently, several roles of GST giving stress tolerance in plants have demonstrated, but little is known about the role of ginseng GSTs. Therefore, this work aimed to provide further information on the GST gene present in Panax ginseng genome as well as its expression and function. A GST cDNA (PgGST) was isolated from P. ginseng cDNA library, and it showed the amino acid sequence similarity with theta type of GSTs. PgGST in ginseng plant was induced by exposure to metals, plant hormone, heavy metals, and high light irradiance. To improve the resistance against environmental stresses, full-length cDNA of PgGST was introduced into Nicotiana tabacum. Overexpression of PgGST led to twofold increase in GST-specific activity compared to the non-transgenic plants, and the GST overexpressed plant showed resistance against herbicide phosphinothricin. The results suggested that the PgGST isolated from ginseng might have a role in the protection mechanism against toxic materials such as heavy metals and herbicides.

Construction of a full-length cDNA library from Typha laxmanni Lepech. and T. angustifolia L. from an EST dataset

  • Im, Subin;Kim, Ho-Il;Kim, Dasom;Oh, Sang Heon;Kim, Yoon-Young;Ku, Ja Hyeong;Lim, Yong Pyo
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.4
    • /
    • pp.583-590
    • /
    • 2018
  • Genus Typha L. (Typhaceae; Cattail in common) is one of the hydrophytic plants found in semi-aquatic regions. About nine to 18 species of the genus exist all over the world. In Korea, the most commonly found cattail species are T. laxmanni and T. angustifolia. The aim of this study was to prepare a cDNA library and sequences and analyze expressed sequence tags (ESTs) from these species, T. laxmanni and T. angustifolia. In the case of T. laxmanni, we observed that 715 out of 742 ESTs had high quality sequences, whereas the remaining 27 ESTs were low quality sequences. In this study, we identified 77 contigs, 393 unassembled clones and 65.7% singletons. Furthermore, in the case of T. angustifolia, we recorded 992 high quality EST sequences, and by excluding 28 low quality sequences from among them, we retrieved 120 contigs, 348 unassembled clones and 48.9% singletons. The basic local alignment search tool (BLAST) and Kyoto encyclopedia of genes and genomes (KEGG) database results enabled us to identify the functional categories, i.e., molecular function (16.5%), biological process (22.2%) and cellular components (61.3%). In addition, between these two species, the no hits and anonymous genes were 4.2% and 11.7% and 6.2% and 11.2% in T. laxmanni and T. angustifolia, respectively, based on the BLAST results. The study concluded that they have certain species-specific genes. Hence, the results of this study on these two species could be a valuable resource for further studies.

cDNA cloning and expression pattern of Cinnamate-4-Hydroxylase in the Korean black raspberry

  • Baek, Myung-Hwa;Chung, Byung-Yeoup;Kim, Jin-Hong;Kim, Jae-Sung;Lee, Seung-Sik;An, Byung-Chull;Lee, In-Jung;Kim, Tae-Hoon
    • BMB Reports
    • /
    • v.41 no.7
    • /
    • pp.529-536
    • /
    • 2008
  • Cinnamate-4-hydroxylase (C4H) is a key enzyme in the phenylpropanoid pathway, which is responsible for synthesizing a variety of secondary metabolites that participate in development and adaptation. In this study, we isolated a full-length cDNA of the C4H gene from the Korean black raspberry (Rubus sp.) and found that this gene existed as a single gene. By comparing the deduced amino acid sequence of Rubus sp. C4H with other sequences reported previously we determined that this sequence was highly conserved among widely divergent plant species. In addition, quantitative real time PCR studies indicated that the C4H gene had a differential expression pattern during fruit development, where gene expression was first detected in green fruit and was then remarkably reduced in yellow fruit, followed by an increase in red and black fruit. To investigate the two peaks in expression observed during fruit development and ripening, we measured the flavonoid content. The content of the major flavanol of Korean black raspberry fruits was determined to be highest at the beginning of fruit development, followed by a gradually decrease according to the developmental stages. In contrast, the content of anthocyanins during the progress of ripening was dramatically increased. Our results suggest that the C4H gene in Korean black raspberry plays a role during color development at the late stages of fruit ripening, whereas the expression of C4H gene during the early stages may be related to the accumulation of flavanols.

Expression of a Cu-Zn Superoxide Dismutase Gene in Response to Stresses and Phytohormones in Rehmannia Glutinosa

  • Park, Myoung-Ryoul;Ryu, Sang-Soo;Yoo, Nam-Hee;Yu, Chang-Yeon;Yun, Song-Joong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.13 no.5
    • /
    • pp.270-275
    • /
    • 2005
  • Superoxide dismutases (SOD) are metalloenzymes that convert $O_2^-\;to\;H_2O_2$. Rehmannia glutinosa is highly tolerant to paraquat-induced oxidative stress. The primary objective of this study was to characterize regulation of SOD gene expression in R. glutinosa in response to oxidative stresses and hormones. A full-length putative SOD clone (RgCu-ZnSOD1) was isolated from the leaf cDNA library of R. glutinosa using an expressed sequence tag clone as a probe. RgCu-ZnSOD1 cDNA is 777 bp in length and contains an open reading frame for a polypeptide consisted of 152 amino acid residues. The deduced amino acid sequence of the clone shows highest sequence similarity to the cytosolic Cu-ZnSODs. The two to three major bands with several minor ones on the Southern blots indicate that RgCu-ZnSOD1 is a member of a small multi-gene family. RgCuZnSOD1 mRNA was constitutively expressed in the leaf, flower and root. The expression of RgCu-ZnSOD1 mRNA was increased about 20% by wounding and paraquat, but decreased over 50% by ethylene and $GA_3$. This result indicates that the RgCu-ZnSOD1 expression is regulated differentially by different stresses and phytohormones at the transcription level. The RgCu-ZnSOD1 sequence and information on its regulation will be useful in investigating the role of SOD in the paraquat tolerance of R. glutinosa.

Identification and structural analysis of novel laccase genes in Flammulina elastica genome (Flammulina elastica의 유전체 정보기반 신규 laccase 유전자 동정 및 구조 분석)

  • Yu, Hye-Won;Park, Young-Jin
    • Journal of Mushroom
    • /
    • v.19 no.1
    • /
    • pp.33-40
    • /
    • 2021
  • The genome sequence of various Flammulina species has recently been reported, thereby revealing a diverse genetic repertoire. In this study, we identified laccase genes and analyzed their structural characteristics in Flammulina elastica (F. elastica) genome. Through genome analysis and bioinformatics approaches, three laccase genes (Fe-lac1, -lac2, and -lac3) were identified, ranging from 1,548 to 1,602 bp in length. These genes contained a copper ion-binding region with ten histidine residues and one cysteine residue and a disulfide bond-forming region with four cysteine residues. Full-length cDNA sequencing analysis revealed that laccase genes contain 12 to 16 introns and signal peptides between 17 and 22 bp in the N-terminus. Structural characterization of the laccase genes identified in this study should help in better understanding the biomass decomposition of F. elastica.

Characterization of Mud Loach (Misgurnus mizolepis) Apolipoprotein A-I: cDNA Cloning, Molecular Phylogeny and Expression Analysis (미꾸라지(Misgurnus mizolepis) Apolipoprotein A-I cDNA의 구조, 분자계통 및 발현 특징 분석)

  • Lee, Youn-Ho;Noh, Jae-Koo;Kim, Keun-Yong;Cho, Young-Sun;Nam, Yoon-Kwon;Kim, Dong-Soo
    • Journal of Aquaculture
    • /
    • v.20 no.1
    • /
    • pp.65-72
    • /
    • 2007
  • Full length complementary DNA encoding apolipoprotein A-I (apoA-I) was isolated and characterized in mud loach (Misgurnus mizolepis). Mud loach apoA-I cDNA encoding 24 bp of 5'-untranslated region (UTR), 762 bp of single open reading frame (ORF) consists of 254 amino acids and 293 bp of 3'-UTR excluding stop codon and poly (A+) tail. Two overlapping polyadenylation signals (AATAAAATAAA) was found 9 bp prior to the poly (A+) tail. Mud loach apoA-I represented considerable homology to those from other teleost species at amino acid level with conserving common features of vertebrate apoA-I. Molecular phylogenetic analysis inferred the phylogenetic hypothesis that was generally in accordance with the previous taxonomic relationship. Apolipoprotein A-I mRNA was detected in various tissues, but the mRNA levels were quite varied depending on tissues based on semi-quantitative RT-PCR. Liver and brain showed the significantly higher levels of apoA-I transcripts than other tissues. mRNA expression of apoA-I was quite low in very early stage of embryonic development, however dramatically enhanced from 8 hours post fertilization. This increased mRNA level was retained consistently up to 14 days post hatching.

Transactivation potential of the C-terminus of human ALG-2 (Human ALG-2 C-말단의 전사활성화 능력 분석)

  • Kim, Keun-Soo;Kim, Eun-Hee
    • The Journal of Natural Sciences
    • /
    • v.11 no.1
    • /
    • pp.89-94
    • /
    • 1999
  • ALG-2 (apoptosis linked gene-2) is a 22 kDa calcium-binding protein necessary for apoptosis induced by various stimuli in lymphocyte. The transactivation of human ALG-2 was assessed in yeast as a fusion protein with the DNA binding domains (DBDs) of LexA. The C-terminal of hALG-2 (93-191 amino acid) exhibited transacitivation of the reporter gene, LacZ, whereas the full-length hALG-2 (1-91 amino acid) and its N-terminal (1-98 amino acid) did not. The transactivation of LacZ reporter was driven more strongly (more than 2.7-fold increase) by the C-terminus of hALG-2 than by the B42, as a positive control for transactivation. Hence, our data suggested a possible regulatory role of the N-termini of hALG-2 upon transactivation.

  • PDF

Isolation of cDNA Encoding Low Temperature-inducible L-asparaginase from Soybean (Glycin max) (저온 스트레스에 발현이 유도되는 콩의 L-asparaginase 유전자의 분리)

  • Park, Seong-Whan;Kim, Kee-Young;Chen, Liang;Lee, Jai-Heon
    • Journal of Plant Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.99-104
    • /
    • 2002
  • Suppression subtractive hybridization (SSH) was used to isolate wound-induced cDNAs from wounded soybean. One of low-temperature-inducible cDNA, slti182 showed high homology with genes encoding 1-asparaginase. The full length cDNA of slti182, deginated GmASP1, is 1258 bp long and contains an open reading frame consisted of 326 amino acids. CmASP1 protein showed the highest identity (84%) with putative asparaginase from A. thaliana (AB012247), but it showed only 55% identity with another isoform of A. tathaliana (Z34884). The expression of GmASP1 during low temperature stress started to increase 3 hours after treatment, reached the maximum at 6 hour, and then decreased to the initial level at 48 hours. The amount of GmASP1 transcripts increased again when low-temperature-treated plants were transferred to room temperature, The present study suggests that GmASP1 may function to accelerate the protein synthesis which is important in the early response to low temperature.

Agroinfiltration-based Potato Virus X Replicons to Dissect the Requirements of Viral Infection

  • Park, Sang-Ho;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.22 no.4
    • /
    • pp.386-390
    • /
    • 2006
  • Extensive research of the Potato virus X(PVX) has been performed in in vitro transcription system using the bacteriophage T7 promoter. We constructed an efficient T-DNA based binary vector, pSNU1, and modified vectors carrying PVX replicons. The suitability of the construct to transiently express PVX RNA using Agrobacterium tumefaciens was tested by analysis of infectivity in plants. The expressed PVX RNA was infectous and systemically spread in three plant species including Nicotiana benthamiana, N. tabacum cv. Xanthi-nc, and Capsicum annuum cv. Chilsungcho. The PVX full length construct, pSPVXp31, was caused severe mosaic symptoms on N. benthamiana, severe necrotic lesions on C. annuum while milder symptoms and delayed mosaic symptoms were appeared on the systemic leaves on N. tabaccum. RT-PCR analysis confirmed the presence of PVX RNAs on both inoculated and systemic leaves in all three plant species tested. Our results indicated that PVX replicons were efficiently expressed PVX RNA in at least three tested species. Further investigation win be needed to elucidate the mechanism of PVX replication, translation, movement and assembly/disassembly processes.

The Transfection of Caldesmon DNA into Primary Cultured Rat Aortic Vascular Smooth Muscle

  • Choi, Woong;Ahn, Hee-Yul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.6
    • /
    • pp.597-603
    • /
    • 1999
  • Caldesmon (CaD), one of microfilament-associated proteins, plays a key role in microfilament assembly in mitosis. We have investigated the effects of overexpression of the high molecular weight isoform of CaD (h-CaD) on the physiology of vascular smooth muscle cells (VSMCs). Rat aortic VSMCs were stably transfected with plasmids carrying a full length human h-CaD cDNA under control of cytomegalovirus promoter. The majority of the overexpressed h-CaD appears to be localized predominantly on cytoskeleton structures as determined by detergent lysis. The overexpression of h-CaD, however, does not decrease the level of endogenous low molecular weight isoform of CaD. h-CaD overexpressing VSMCs (h-CaD/VSMCs) show a decreased growth rate than that of vector-only transfected cells when determined by $[^3H]thymidine$ uptake and cell counting after fetal bovine serum (FBS) stimulation. h-CaD/VSMCs were smaller than vector-transfected cells by 18% in cell diameter. These data suggest that overexpression of h-CaD can inhibit the poliferation and the cell volume of VSMCs stimulated by growth factors and that the gene therapy with h-CaD may be helpful to prevent the conditions associated with hypertrophy and/or hyperplasia of VSMCs after arterial injuries.

  • PDF