Browse > Article
http://dx.doi.org/10.14480/JM.2021.19.1.33

Identification and structural analysis of novel laccase genes in Flammulina elastica genome  

Yu, Hye-Won (Department of Medicinal Biosciences, Konkuk University)
Park, Young-Jin (Department of Medicinal Biosciences, Konkuk University)
Publication Information
Journal of Mushroom / v.19, no.1, 2021 , pp. 33-40 More about this Journal
Abstract
The genome sequence of various Flammulina species has recently been reported, thereby revealing a diverse genetic repertoire. In this study, we identified laccase genes and analyzed their structural characteristics in Flammulina elastica (F. elastica) genome. Through genome analysis and bioinformatics approaches, three laccase genes (Fe-lac1, -lac2, and -lac3) were identified, ranging from 1,548 to 1,602 bp in length. These genes contained a copper ion-binding region with ten histidine residues and one cysteine residue and a disulfide bond-forming region with four cysteine residues. Full-length cDNA sequencing analysis revealed that laccase genes contain 12 to 16 introns and signal peptides between 17 and 22 bp in the N-terminus. Structural characterization of the laccase genes identified in this study should help in better understanding the biomass decomposition of F. elastica.
Keywords
Bioinformatics analysis; Flammulina elastica; Genome; Laccase;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Altschul SF, Erickson BW. 1985. Significance of nucleotide sequence alignments: a method for random sequence permutation that preserves dinucleotide and codon usage. Mol Biol Evol 2: 526-538.
2 Eriksson KEL, Blanchette RA, Ander P. 1990. Morphological aspects of wood degradation by fungi and bacteria. In K. E. L. Eriksson, R. A. Blanchette & P. Ander. Microbial and Enzymatic Degradation of Wood and Wood Components, Springer-Verlag Berlin Heidelberg. Berlin, Heidelberg. 1-87.
3 Ballesteros M, Oliva JM, Negro MJ, Manzanares P, Ballesteros I. 2004. Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875. Process Biochem 39: 1843-1848.   DOI
4 Bento I, Carrondo MA, Lindley PF. 2006. Reduction of dioxygen by enzymes containing copper. J Biol Inorg Chem 11: 539-547.   DOI
5 Bertrand T, Jolivalt C, Briozzo P, Caminade E, Joly N, Madzak C, Mougin C. 2002. Crystal structure of a four-copper laccase complexed with an arylamine: insights into substrate recognition and correlation with kinetics. Biochemistry 41: 7325-7333.   DOI
6 Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114-2120.   DOI
7 Breathnach R, Benoist C, O'Hare K, Gannon F, Chambon P. 1978. Ovalbumin gene: evidence for a leader sequence in mRNA and DNA sequences at the exon-intron boundaries. Proc Natl Acad Sci USA 75: 4853-4857.   DOI
8 Buchfink B, Xie C, Huson DH. 2015. Fast and sensitive protein alignment using DIAMOND. Nat Methods 12: 59-60.   DOI
9 Eggert C, Temp U, Dean JFD, Eriksson KEL. 1996. A fungal metabolite mediates degradation of non-phenolic lignin structures and synthetic lignin by laccase. FEBS Lett 391: 144-148.   DOI
10 Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J Mol Biol 215: 403-410.   DOI
11 Giardina P, Faraco V, Pezzella C, Piscitelli A, Vanhulle S, Sannia G. 2010. Laccases: a never-ending story. Cell Mol Life Sci 67: 369-385.   DOI
12 Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, et al. 2016. The Pfam protein families database: towards a more sustainable future. Nucleic acids Res 44: D279-D285.   DOI
13 Fitch WM. 1983. Random sequences. J Mol Biol 163: 171-176.   DOI
14 Galhaup C, Goller S, Peterbauer CK, Strauss J, Haltrich D. 2002. Characterization of the major laccase isoenzyme from Trametes pubescens and regulation of its synthesis by metal ions. Microbiology 148: 2159-2169.   DOI
15 Ha HC. 2012. Screening and production of lignocellulolytic enzymes secreted by the edible basidiomycete Pleurotus ostreatus. J Mushrooms 10: 74-82.
16 Hakulinen N, Rouvinen J. 2015. Three-dimensional structures of laccases. Cell Mol Life Sci 72: 857-868.   DOI
17 Hatamoto O, Sekine H, Nakano E, Abe K. 1999. Cloning and expression of a cDNA encoding the laccase from Schizophyllum commune. Biosci Biotechnol Biochem 63: 58-64.   DOI
18 Jain RG, Rusch SL, Kendall DA. 1994. Signal peptide cleavage regions. Functional limits on length and topological implications. J Biol Chem 269: 16305-16310.   DOI
19 Kwon JK, Moon HS, Kim JS, Kim SW, Hong SI. 1999. Fed-batch simultaneous saccharification and fermentation of waste paper to ethanol. Korean J Biotechnol Bioeng 14: 24-30.
20 Kim HI, Kwon OC, Kong WS, Lee CS, Park YJ. 2014. Genomewide identification and characterization of novel laccase genes in the white-rot fungus Flammulina velutipes. Mycobiology 42: 322-330.   DOI
21 Lee SB, Lee JD. 2010. Effect of pretreatment process on cellulosic ethanol production using waste papers. J Korea Soc Waste Manag 27: 553-557.
22 Park YJ, Baek JH, Lee S, Kim C, Rhee H, Kim H, Seo JS, Park HR, Yoon DE, Nam JY, et al. 2014. Whole genome and global gene expression analyses of the model mushroom Flammulina velutipes reveal a high capacity for lignocellulose degradation. PLoS One 9: e93560.   DOI
23 Lipman DJ, Wilbur WJ, Smith TF, Waterman MS. 1984. On the statistical significance of nucleic acid similarities. Nucleic Acids Res 12: 215-226.   DOI
24 Martone PT, Estevez JM, Lu F, Ruel K, Denny MW, Somerville C, Ralph J. 2009. Discovery of lignin in seaweed reveals convergent evolution of cell-wall architecture. Curr Biol 19: 169-175.   DOI
25 Mayer AM, Staples RC. 2002. Laccase: new functions for an old enzyme. Phytochemistry 60: 551-565.   DOI
26 Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, et al. 2012. The Pfam protein families database. Nucleic Acids Res 40: D290-D301.   DOI
27 Redhead SA, Petersen RH. 1999. New species, varieties and combinations in the genus Flammulina. Mycotaxon 71: 285-294.
28 Sista Kameshwar AK, Qin W. 2017. Comparative study of genome-wide plant biomass-degrading CAZymes in white rot, brown rot and soft rot fungi. Mycology 9: 93-105.   DOI
29 Rytioja J, Hilden K, Yuzon J, Hatakka A, de Vries RP, Makela MR. 2014. Plant-polysaccharide-degrading enzymes from basidiomycetes. Microbiol Mol Biol Rev 78: 614-649.   DOI
30 Scott CD, Davison BH, Scott TC, Woodward J, Dees C, Rothrock DS. 1994. An advanced bioprocessing concept for the conversion of waste paper to ethanol. Appl Biochem Biotechnol 45: 641-653.   DOI
31 Smale ST, Kadonaga JT. 2003. The RNA polymerase II core promoter. Annu Rev Biochem 72: 449-479.   DOI
32 Solomon EI, Sundaram UM, Machonkin TE. 1996. Multicopper oxidases and oxygenases. Chem Rev 96: 2563-2606.   DOI
33 Yaropolov AI, Skorobogat'ko OV, Vartanov SS, Varfolomeyev SD. 1994. Laccase properties, catalytic mechanism, and applicability. Appl Biochem Biotechnol 49: 257-280.   DOI
34 Strange RW, Reinhammer B, Murphy LM, Hasnain SS. 1995. Structural and spectroscopic studies of the copper site of stellacyanin. Biochemistry 34: 220-231.   DOI
35 Thurston CF. 1994. The structure and function of fungal laccases. Microbiology 140: 19-26.   DOI
36 Weinzierl ROJ. 1999. Mechanisms of gene expression: structure, function and evolution of the basal transcriptional machinery. Imperial College Press, London. 1-424.
37 Zerbino DR, Birney E. 2008. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18: 821-829.   DOI
38 Zhu JY, Pan XJ. 2010. Woody biomass pretreatment for cellulosic ethanol production: technology and energy consumption evaluation. Bioresour Technol 101: 4992-5002.   DOI
39 Stanke M, Morgenstern B. 2005. AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res 33: W465-W467.   DOI