• Title/Summary/Keyword: full-bridge inverter

Search Result 295, Processing Time 0.02 seconds

A Design of Power Converter for Fuel Cell Controlled by Micro-Processor (마이크로프로세서에 의해 제어되는 연료전지용 전력변환 회로 설계)

  • Won, Chung-Yuen;Jang, Su-Jin;Lee, Won-Chul;Lee, Tae-Won;Kim, Soo-Seok
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.5
    • /
    • pp.61-68
    • /
    • 2004
  • Recently, a fuel cell is remarkable for new generation system. The fuel cell is characterized by low voltage and high current. Therefor, for connecting to general load, it needs both a step up converter and an inverter. The proposed system consists of an isolated DC-DC converter to boost the fuel cell voltage to 380[Vdc] and a PWM inverter with LC filter to convert the dc voltage to single phase 220[Vac]. Also, bi-directional DC-DC converter for fuel cell generation system is composed to improve load response characteristic. In this paper, full bridge converter and the single phase inverter are designed and installed for fuel cell. Simulation and experiment verify that fuel cell generation system could be applied for the distributed generation.

Analysis and Design of the ignitor for Metal Halide Lamp driven by Full-Bridge Inverter (풀 브리지 인버터에 적합한 메탈 핼라이드 램프용 점화기의 해석 및 설계)

  • Park, Chong-Yun;Lee, Bong-Jin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.8
    • /
    • pp.20-26
    • /
    • 2007
  • A high ignition voltage is required to turn on the metal halide discharge(MHD) lamp. The igniter with high frequency resonance circuit needs more devices, such as sidac, arc-gab, SCR(silicon control rectifier), DIAC and so of which increase the complexity and decrease the reliability of the ignitor. This paper analyzes and designs a simple LC resonance type igniter without any extra switch devices. Moreover, the igniter will not influence the steady-state operation of the lamp. Through the mathematical analysis, the computer simulation and experiment results of a prototype ballast for 1[kW] metal halide lamp(MHL) lamp, the proposed igniter was verified to be effective.

High-Power Electronic Ballast Design for Metal-Halide Lamp without Acoustic Resonance (음향 공명 현상을 제거한 MHL용 고출력 전자식 안정기 설계)

  • Park, Chong-Yun;Kim, Ki-Nam;Lee, Bong-Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.7
    • /
    • pp.1187-1194
    • /
    • 2008
  • This paper presents a high-power electronic ballast for a metal-hallide lamp(MHL) that employs frequency modulation(FM) technique to eliminate acoustic resonance(AR). The proposed ballast consists of a full-bridge rectifier, a power factor correction(PFC) circuit, a full-bridge(FB) inverter, an ignitor using LC resonance and an FM control circuit. Whereas a manual PFC provides advantages in terms of high reliability and low cost for constructing the circuit, it is difficult to supply a stable voltage because of the output voltage ripple that occurs with a period of 120Hz. Although the ballast can be designed with a small size and a light weight if it is driven at a switching frequency between 1 and 100 kHz, AR will occur if the eigen-value frequency of the lamp coincides with the inverter's operation frequency. The operation frequency was modulated in real time according to the output voltage ripple to compensate for the variation in power supplied to the lamp and eliminate AR. Performance of the proposed technique was validated through numerical analysis, computer simulation using PSPICE and by applying it to an electronic ballast for a prototype 1kW MHL.

Bi-directional DC-DC Converter Design and Control for Fuel Cell System (연료전지 시스템용 양방향 DC-DC컨버터 설계 및 제어)

  • Kim Sung Ho;Jang Han Keun;Jang Su Jin;Won Chung Yuen;Kim yoon ho
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.479-483
    • /
    • 2004
  • Fuel Cell (FC) has slow response characteristic for load variation. During a load step, the inverter cannot pull more power from the fuel cell than is currently available so supplemental power must be provide by some sort of energy storage elements. In this paper, hi-directional do-dc converter for FC generation system is proposed to improve load response characteristic. The hi-directional converter interfaces the low voltage battery to the inverter dc link of FC generation system. The converter is based on a active full bridge in the primary side and on a half bridge in the secondary of a high frequency isolation transformer. The complete operating principles and simulation results in presented.

  • PDF

A Study on the rower Control of Magnetron for Microwave Oven (Microwave Oven용 마그네트론의 전력제어에 관한 연구)

  • Kim Yoon-Sik;Kim Jong-Soo;Lee Sung-Gun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.7
    • /
    • pp.1172-1177
    • /
    • 2004
  • This paper describes a output power control of magnetron for microwave oven. Magnetron is used extensively in household microwave oven and industrial microwave heating devices it is operated by 3000[V]~5000[V] dc high voltage. Power supply for driving magnetron is consisted of a bridge rectifier. HB(half bridge) inverter, full wave rectifier and gate drive circuit. In proposed system. we confirm that line input power can be controlled extensively and linearly to 24.56[%] by change of duty ratio of inverter through a experiment.

A New 19-level PWM Inverter for the Use of Stand-alone Photovoltaic Power Generation Systems (독립형 태양광 발전 시스템을 위한 새로운 19레벨 PWM 인버터)

  • 강필순;오석규;박성준
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.7
    • /
    • pp.452-461
    • /
    • 2004
  • A novel multilevel PWM inverter is presented for the use of stand-alone photovoltaic power generation system. In appearance, it consists of three full-bridge modules and three cascaded transformers; therefore, the configuration of the proposed multilevel PW inverter is equal to that of a prior 11-level PWM inverter. Only the turn-ratio of a transformer and its corresponding switching function are different from each other. Owing to these differences, the proposed 19-level PWM inverter has two promising advantages. First, output voltage levels increase almost twofold. Consequently, it can generate more sinusoidal output voltage waveform. Second, due to a revised switching pattern, it lightens power imposed on the transformer, which is used for compensating output voltages with chopped pulses between steps. The validity of the proposed inverter system is verified by computer-aided simulations and experimental results based on a 1 [kW] prototype. The performance of the proposed 19-level PWM inverter is compared with the Prior 11-level PWM inverter and other counterparts.

The Study of Single Phase Source Stability consider for The DSC Cell's Operation Character by Controlled Feed-back Circuit

  • Lee, Hee-Chang
    • Journal of information and communication convergence engineering
    • /
    • v.4 no.4
    • /
    • pp.170-173
    • /
    • 2006
  • Recently, with increasing efficiency of DSC (photo-electrochemical using a nano-particle), The Performance of DSC solar generation system also needs improvement. The approach consists of a Fly-back DC-DC (transfer ratio 1:10) converter to boost the DSC cell voltage to 300VDC. The four switch (MOSFET) inverter is employed to produce 220V, 60Hz AC outputs. High performance, easy manufacturability, lower component count., safety and cost are addressed. Protection and diagnostic features form an important part of the design. Another highlight of the proposed design is the control strategy, which allows the inverter to adapt to the: requirements of the load as well as the power source. A unique aspect of the design is the use of the DSP TMS320LF2406 to control the inverter by current and voltage feed-back. Efficient and smooth control of the: power drawn from the DSC Cell is achieved by controlling the front end DC-DC converter in current mode.

A Characteristic of commercial frequency unity Resonant PWM Inverter. (상용 주파수용 단일 공진 PWM 인버터의 특성)

  • Kim, Jong-Hae;Bae, Sang-June;Kim, Kyung-Sik;Moon, Chang-Soo;Ahn, Hang-Mok
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.318-320
    • /
    • 1996
  • This paper describes a new dc/ac inverter system, which makes use of parallel loaded high frequency resonant inverter consisting of full bridge, for achieving sinusoidal ac waveform. Because current throughout switch at turn-on is always zero in proposed inverter, low stress and low switching loss is achieved. Operating characteristic of proposed system is analyzed in per unit system using computer simulation. Output voltage of it include low harmonics and almost close tn sine wave.

  • PDF

PWM Inverter For Reducing Switching Loss (스위칭 손실 저감을 위한 이단 PWM 인버터)

  • Choi, Bong-Joo;Jeong, Jin-Beom;Kim, Hee-Jun;Baek, Soo-Hyun;Lee, Ju;Ahn, Kang-Soon
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.207-209
    • /
    • 2004
  • The conventional pulse width modulation dc to at inverters have a defect that all power devices are switched at high switching frequency. Therefore switching losses are significant. This paper proposed a dual-stage inverter that full bridge switches are operating at low output frequency while a high switching frequency are performed by a pre-inverter switch. The proposed inverter is shown to have small switching losses. Simulation and experiments are performed for verification.

  • PDF

A Study on Fuel Cell Inverter Operation for Distributed Generation (분산전원용 연료전지 인버터 운전에 관한 연구)

  • Jang S.J.;Lee T.W.;Song S.H.;Kim J.H.;Won C.Y.;Kim Y.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.981-986
    • /
    • 2003
  • Recently, a fuel cell is remarkable for new generation system. The fuel cell generation system converts the chemical energy of a fuel directly into electrical energy. The fuel cell generation is characterized by low voltage and high current. For connecting to utility, it needs both a step up converter and an inverter. The step up converter makes DC link and the inverter changes D.C to A.C. In this paper, full bridge converter and the single phase inverter are designed and installed for fuel cell. Simulation and experiment verify that fuel cell generation system could be applied for the distributed generation.

  • PDF