• Title/Summary/Keyword: full width at half maximum

Search Result 393, Processing Time 0.023 seconds

Growth and characterization of ZnIn$_2$S$_4$ single crystal thin film using Hot Wall Epitaxy method (Hot Wall Epitaxy (W)에 의한 ZnIn$_2$S$_4$ 단결정 박막 성장과 특성)

  • 윤석진;홍광준
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.266-272
    • /
    • 2002
  • The stochiometric mixture of evaporating materials for the ZnIn$_2$S$_4$ single crystal thin film was prepared from horizontal furnace. To obtain the ZnIn$_2$S$_4$ single crystal thin film, ZnIn$_2$S$_4$ mixed crystal was deposited on throughly etched semi-insulating GaAs(100) in the Hot Wall Epitaxy(HWE) system. The source and substrate temperature were 610 $^{\circ}C$ and 450 $^{\circ}C$, respectively and the growth rate of the ZnIn$_2$S$_4$ single crystal thin film was about 0.5 $\mu\textrm{m}$/hr. The crystalline structure of ZnIn$_2$S$_4$ single crystal thin film was investigated by photo1uminescence and double crystal X-ray diffraction(DCXD) measurement. The carrier density and mobility of ZnIn$_2$S$_4$ single crystal thin film measured from Hall effect by van der Pauw method are 8.51${\times}$10$\^$17/ cm$\^$-3/, 291 $\textrm{cm}^2$/V$.$s at 293 $^{\circ}$K, respectively. From the photocurrent spectrum by illumination of perpendicular light on the c - axis of the ZnIn$_2$S$_4$ single crystal thin film, we have found that the values of spin orbit splitting ΔSo and the crystal field splitting ΔCr were 0.0148 eV and 0.1678 eV at 10 $^{\circ}$K, respectively. From the photoluminescence measurement of ZnIn$_2$S$_4$ single crystal thin film, we observed free excition (E$\_$X/) typically observed only in high quality crystal and neutral donor bound exciton (D$^{\circ}$,X) having very strong peak intensity. The full width at half maximum and binding energy of neutral donor bound excition were 9 meV and 26 meV, respectively. The activation energy of impurity measured by Haynes rule was 130 meV.

  • PDF

Growth and Optoelectric Characterization of $ZnGa_{2}Se_{4}$ Single Crystal Thin Films by Hot Wall Epitaxy (Hot Wall Epitaxy (HWE)에 의한 $ZnGa_{2}Se_{4}$ 단결정 박막 성장과 광전기적 특성)

  • Park, Chang-Sun;Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.163-166
    • /
    • 2001
  • The stochiometric mix of evaporating materials for the $ZnGa_{2}Se_{4}$ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, $ZnGa_{2}Se_{4}$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were $610^{\circ}C$ and $450^{\circ}C$, respectively. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $ZnGa_{2}Se_{4}$ single crystal trun films measured from Hall effect by van der Pauw method are $9.63{\times}10^{17}cm^{-3}$, $296cm^{2}/V{\cdot}s$ at 293 K, respectively. From the photocurrent spectrum by illumination of perpendicular light on the c axis of the $ZnGa_{2}Se_{4}$ single crystal thin film, we have found that the values of spin orbit splitting $\Delta$ So and the crystal field splitting $\Delta$Cr were 251.9 meV and 183.2 meV at 10 K, respectively. From the photoluminescence measurement on $ZnGa_{2}Se_{4}$ single crystal thin film, we observed free excition (Ex) existing only high quality crystal and neutral bound exiciton $(A^{0},X)$ having very strong peak intensity. Then, the full-width-at -half-maximum(FWHM) and binding energy of neutral acceptor bound excition were 11 meV and 24.4 meV, respectivity. By Haynes rule, an activation energy of impurity was 122 meV.

  • PDF

Growth and Optoelectric Characterization of $CdGa_{2}Se_{4}$ Single Crystal Thin Films by Hot Wall Epitaxy (Hot Wall Epitaxy (HWE)에 의한 $CdGa_{2}Se_{4}$ 단결정 박막 성장과 광전기적 특성)

  • Hong, Kwang-Joon;Park, Chang-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.167-170
    • /
    • 2001
  • The stochiometric mix of evaporating materials for the $CdGa_{2}Se_{4}$ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, $CdGa_{2}Se_{4}$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were $630^{\circ}C$ and $420^{\circ}C$, respectively. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CdGa_{2}Se_{4}$ single crystal thin films measured from Hall effect by van der Pauw method are $8.27{\times}10^{17}cm^{-3},345cm^{2}/V{\cdot}s$ at 293 K, respectively. From the photocurrent spectrum by illumination of perpendicular light on the c-axis of the $CuInSe_{2}$ single crystal thin film, we have found that the values of spin orbit splitting $\Delta$ So and the crystal field splitting $\Delta$Cr were 106.5 meV and 418.9 meV at 10 K, respectively. From the photoluminescence measurement on $CdGa_{2}Se_{4}$ single crystal thin film, we observed free excition (Ex) existing only high Quality crystal and neutral bound exiciton $(D^{0},X)$ having very strong peak intensity. Then, the full-width-at-half-maximum(FWHM) and binding energy of neutral donor bound excition were 8 meV and 13.7 meV, respectivity. By Haynes rule, an activation energy of impurity was 137 meV.

  • PDF

Effect of V/III Ratio Variation on the Properties of AlN Epilayers in HVPE (HVPE법에 의해 성장된 AlN 에피층의 V/III비에 따른 특성변화)

  • Son, Hoki;Lim, Tae-Young;Lee, Mijai;Kim, Jin-Ho;Kim, Younghee;Hwang, Jonghee;Oh, Hae-Kon;Choi, YoungJun;Lee, Hae-Yong;Kim, Hyung Sun
    • Korean Journal of Materials Research
    • /
    • v.23 no.12
    • /
    • pp.732-736
    • /
    • 2013
  • AlN epilayers were grown on a c-plane sapphire substrate using hydride vapor phase epitaxy (HVPE). A series of AlN epilayers were grown at $1120^{\circ}C$ with V/III ratios 1.5, 2.5 and 3.5, and the influence of V/III ratio on their properties was investigated. As the V/III ratio was increased, the surface roughness (RMS roughness), Raman shift of $E_2$ high peaks and full-width at half-maximum (FWHM) of symmetrical (002) & asymmetrical (102) of the AlN epilayers increased. However, the intensities of the Raman $E_2$ high peaks were reduced. This indicates that the crystal quality of the grown AlN epilayers was degraded by activation of the parasitic reaction as the V/III ratio was increased. Smooth surface, stress free and high crystal quality AlN epilayers were obtained at the V/III ratio of 1.5. The crystal quality of AlNepilayers is worsened by the promotion of three-dimensional (3D) growth mode when the flow of $NH_3$ is high.

Highly transparent Pt ohmic contact to InGaN/GaN blue light-emitting diodes

  • Chul Huh;Kim, Hyun-Soo;Kim, Sang-Woo;Lee, Ji-Myon;Kim, Dong-Joon;Kim, Hyun-Min;Park, Seon-Ju
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.4 no.2
    • /
    • pp.47-49
    • /
    • 2000
  • We report on the fabrication and characterization of InGaN/GaN multiple quantum well light emitting diode (LED) with a highly transparent Pt ohmic contact as a current spreading layer. The value of light transmittance of a Pt thin film with a thickness of 8 m on p-GaN was measured to be 85% at 450nm. The peak wavelength and the full-width at half-maximum (FWHM) of the emission spectrum of the LED at 20 mA were 453 m and 23 m, respectively. Pt-contacted LEDs show good electrical properties and high light-output efficiency compared to Ni/Au-contacted ones. These results suggest that a Pt thin film can be used as an effective current spreading layer with high light-transparency.

  • PDF

Orange Phosphorescent Organic Light-emitting Diodes Using a Spirobenzofluorene-type Phospine Oxides as Host Materials

  • Jeon, Young-Min;Lee, In-Ho;Lee, Chil-Won;Lee, Jun-Yeob;Gong, Myoung-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2955-2960
    • /
    • 2010
  • Spiro-type orange phosphorescent host materials, 9-diphenylphosphine oxide-spiro[fluorene-7,9'-benzofluorene] (OPH-1P) and 5-diphenylphosphine oxide-spiro[fluorene-7,9'-benzofluorene] (OPH-2P) were successfully prepared by a lithiation reaction followed by a phosphination reaction with diphenylphosphinic chloride. The EL characteristics of OPH-1P and OPH-2P as orange host materials doped with iridium(III) bis(2-phenylquinoline)acetylacetonate ($Ir(pq)_2acac$) were evaluated. The electroluminescence spectra of the ITO (150 nm)/DNTPD (60 nm)/NPB (30 nm)/OPH-1P or OPH-2P: $Ir(pq)_2acac$ (30 nm)/BCP (5 nm)/$Alq_3$ (20 nm)/LiF (1 nm)/Al (200 nm) devices show a narrow emission band with a full width at half maximum of 75 nm and $\lambda_{max}$ = 596 nm. The device obtained from OPH-1P doped with 3% $Ir(pq)_2acac$ showed an orange color purity of (0.580, 0.385) and an efficiency of (14 cd/A at 7.0 V). The ability of the OPH-P series to combine a high triple energy with a low operating voltage is attributed to the inductive effect of the P=O moieties and subsequent energy lowering of the LUMO, resulting in the enhancement of both the electron injection and transport in the device. The overall result is a device with an EQE > 8% at high brightness, but operating voltage of less than 6.4 V, as compared to the literature voltages of ~10 V.

Growth and Optoelectric Characterization of CdGa$_2$Se$_4$ Sing1e Crystal Thin Films (Hot Wall Epitaxy (HWE)에 의한 CdGa$_2$Se$_4$ 단결정 박막 성장과 광전기적 특성)

  • 홍광준;박창선
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.167-170
    • /
    • 2001
  • The stochiometric mix of evaporating materials for the CdGa$_2$Se$_4$ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, CdGa$_2$Se$_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were 630$^{\circ}C$ and 420$^{\circ}C$, respectively. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of CdGa$_2$Se$_4$ single crystal thin films measured from Hall erect by van der Pauw method are 8.27x10$\^$17/ cm$\^$-3/, 345 $\textrm{cm}^2$/V$.$s at 293 K, respectively. From the Photocurrent spectrum by illumination of perpendicular light on the c-axis of the CuInSe$_2$ single crystal thin film, we have found that the values of spin orbit splitting ΔSo and the crystal field splitting ΔCr were 106.5 meV and 418.9 meV at 10 K, respectively. From the photoluminescence measurement on CdGa$_2$Se$_4$ single crystal thin film, we observed free excition (E$\_$X/) existing only high quality crystal and neutral bound exiciton (D$\^$0/,X) having very strong peak intensity. Then, the full-width-at-half-maximum(FWHM) and binding energy of neutral donor bound excision were 8 meV and 13.7 meV, respectivity. By Haynes rule, an activation energy of impurity was 137 meV,

  • PDF

Growth and Optoelectric Characterization of $ZnGa_{2}Se_{4}$ Sing1e Crystal Thin Films (Hot Wall Epitaxy (HWE)에 의한$ZnGa_{2}Se_{4}$단결정 박막 성장과 광전기적 특성)

  • 박창선;홍광준
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.163-166
    • /
    • 2001
  • The stochiometric mix of evaporating materials for the ZnGa$_2$Se$_4$ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, ZnGa$_2$Se$_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were 61$0^{\circ}C$ and 45$0^{\circ}C$, respectively. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of ZnGa$_2$Se$_4$ single crystal thin films measured from Hall effect by van der Pauw method are 9.63x10$^{17}$ cm$^{-3}$ , 296 $\textrm{cm}^2$/V.s at 293 K, respectively, From the photocurrent spectrum by illumination of perpendicular light on the c-axis of the ZnGa$_2$Se$_4$ single crystal thin film, we have found that the values of spin orbit splitting $\Delta$So and the crystal field splitting $\Delta$Cr were 251.9 MeV and 183.2 meV at 10 K, respectively. From the photoluminescence measurement on ZnGa$_2$Se$_4$ single crystal thin film, we observed free excition (E$_{x}$) existing only high quality crystal and neutral bound excition (A$^{0}$ ,X) having very strong peak intensity. Then, the full-width-at-half-maximum(FWHM) and binding energy of neutral acceptor bound excition were 11 meV and 24.4 meV, respectivity. By Haynes rule, an activation energy of impurity was 122 meV.on energy of impurity was 122 meV.

  • PDF

Raman Scattering Characteristics on 3C-SiC Thin Films Deposited by APCVD Method (APCVD법으로 증착한 3C-SiC 박막의 라만 산란 특성)

  • Jeong, Jun-Ho;Chung, Gwiy-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.7
    • /
    • pp.606-610
    • /
    • 2007
  • This paper describes the Raman scattering characteristics of polycrystalline (poly) 3C-SiC thin films, in which they were deposited on the oxidized Si substrate by APCVD method according to growth temperature. Since the phonon modes were not measured for $0.4{\mu}m$ thick 3C-SiC, $2.0{\mu}m$ thick 3C-SiC deposited on the oxidized Si at $1180^{\circ}C$, in which TO (transverse optical mode) and LO (longitudinal optical mode) phonon modes were appeared at 794.4 and $965.7cm^{-1}$, respectively. The broad FWHM (full width half maximum) can explain that the crystallinity of 3C-SiC deposited at $1180^{\circ}C$ becomes polycrystalline instead of disorder crystal. Additionally, the ratio of intensity $I_{LO}/I_{TO}{\approx}1.0$ of 3C-SiC indicates that the crystal disorder of $3C-SiC/SiO_2/Si$ is small. Compared poly $3C-SiC/SiO_2$ with $SiO_2/Si$ interfaces, $1122.6cm^{-1}$ phonon mode was measured which may belong to C-O bonding and two phonon modes, 1355.8 and $1596.8cm^{-1}$ related to D and G bands of C-C bonding in the Raman range of 200 to $2000cm^{-1}$.

Highly transparent Pt ohmic contact to InGaN / GaN blue light - emitting diodes

  • Huh, Chul;Kim, Hyun-Soo;Kim, Sang-Woo;Lee, Ji-Myon;Kim, Dong-Joon;Kim, Hyun-Min;Park, Seong-Ju
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.4 no.3
    • /
    • pp.78-80
    • /
    • 2000
  • We reprot on the fabrication and characterization of InGaN/GaN multiple quantum well light-emitting diode (LED) with a highly transparent Pt ohmic contact as a current spreading layer. The value of light transmittance of a Pt thin film with a thickness of 8 nm on-GaN was measured to be 85% at 450 nm. The peak wavelength and the full-width at half-maximum (FWHM) of the emission spectrum of the LED at 20 mA were 453 nm and 23 nm, respectively. Pt-contacted LEDs show good electrical properties and high light-output efficiency compared to Ni/Au-contacted ones. These results suggest that a Pt thin film can be used as an effective current spreading layer with high light-transparency.

  • PDF