• Title/Summary/Keyword: full width at half maximum

Search Result 393, Processing Time 0.027 seconds

Influences of Spinodal Decomposition of InGaAsP Layer on Photoluminescence Characteristics (InGaAsP 에피막의 Spinodal분해 조직구조가 Photoluminescence 특성에 미치는 영향)

  • Lee, Jong-Won
    • Korean Journal of Materials Research
    • /
    • v.5 no.8
    • /
    • pp.936-944
    • /
    • 1995
  • The effects of Spinodal decomposition induced phase separated microstructure of InGaAsP/InP heterostructure on photoluminescence(PL) intensity and FWHM(full-width at half maximum) were investigated in this study. Lattice mismatches were measured by double crystal x-ray diffractometer, and the microstructures of phase separated InGaAsP were observed by transmission electron microscopy. It was found that the misfit stress calculated from lattice mismatch was related to the periodicity of Spinodal modulation. Strong dependence of PL intensity and FWHM on the modulation periodicity was also found. For systematic understanding of these observations, the interaction elastic strain energy function induced by misfit stress was proposed. The calculation illustrated that the microstructure of the epilayer such as Spinodal decomposition played an important role in determining the optoelectronic properties such as PL intensity and PL FWHM.

  • PDF

Organic-layer thickness dependent optical properties of top emission organic light-eitting diodes (전면 유기 발광 소자의 유기물층 두께 변화에 따른 광학적 특성)

  • An, Hui-Chul;Joo, Hyun-Woo;Na, Su-Hwan;Kim, Tae-Wan;Hong, Jin-Woong;Oh, Yong-Cheul;Song, Min-Joung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.413-414
    • /
    • 2008
  • We have studied an organic layer thickness dependent optical properties and microcavity effects for top-emission organic light-emitting diodes. Manufactured top emission device, structure is Al(100nm)ITPD(xnm)/$Alq_3$(ynm)/LiF(0.5nm)/Al(23nm). While a thickness of hole-transport layer of TPD was varied from 35 to 65nm, an emissive layer thickness of $Alq_3$ was varied from 50 to 100nm for two devices. A ratio of those two layers was kept to about 2:3. Variation of the layer thickness changes a traverse time of injected carriers across the organic layer, so that it may affect on the chance of probability of exciton formation. View-angle dependent emission spectra were measured for the optical measurements. Top-emission devices show that the emission peak wavelength shifts to longer wavelength as the organic layer thickness increases. For instance, it shifts from 490 to 555nm in the thickness range that we used. View-angle dependent emission spectra show that the emission intensity decreases as the view-angle increases. The organic layer thickness-dependent emission spectra show that the full width at half maximum decreases as the organic layer thickness increases. Top emission devices show that the full width at half maximum changes from 90 to 35nm as the organic layer thickness increases. In top-emission device, the microcavity effect is more vivid as the organic layer thickness increases.

  • PDF

Raman Scattering Characteristics with Varying Liquid Water Temperature (유체온도 변화에 따른 Raman 산란 특성)

  • An, Jeongsoo;Yang, Sunkyu;Chun, Seyoung;Chung, Moonki;Choi, Youngdon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.5
    • /
    • pp.621-627
    • /
    • 1999
  • This paper presents Raman scattering of liquid water to obtain the characteristics with variation of temperature. Very clear Stokes-Raman signals were observed, which shows H-O vibration stretching and H-O-H vibration bending. The obtained spectrum were processed by FFT filter to extract the noise and base. The spectral shape of the H-O stretching provided a various sensitive signature which allowed temperature to be determined by a curve-fitting technique. Those are Maximum Intensity, Maximum Wave Length, FWHM(Full Width at Half Maximum), PMCR(Polymer Monomer Concentration Ratio) and TSIR(Temperature Sensitive Intensity Ratio). TSIR method shows the highest accuracy of $0.1^{\circ}C$ in mean error and $0.32^{\circ}C$ In maximum error.

X-ray diffraction analysis on sapphire wafers with surface treatments in chemical-mechanical polishing process (사파이어 웨이퍼 연마공정에서의 표면처리효과에 대한 X-선 회절분석)

  • 김근주;고재천
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.5
    • /
    • pp.218-223
    • /
    • 2001
  • The chemical-mechanical polishing process was carried out for 2"-dia. sapphire wafer grown by horizontalBridgman method on the urethane lapping pad with the silica sol. The polished wafer shows the full-width at halfmaximum of 200~400 arcsec in double-crystal X-ray diffraction, indicating that the slicing, grinding and lapping processes before the polishing process affected the crystalline structural property of the wafer surface by the mechanical residual stress. For the inclusion of surface treatments after chemical-mechanical polishing such as the thermal annealing at the temperature of $1,200^{\circ}C$for 4 hrs. and chemical etching, the crystalline quality was sigdicantly enhanced with the reduced full-width at half maximum up to 8.3 arcsec.arcsec.

  • PDF

Electrical and Optical Properties with the Thickness of Cu(lnGa)$Se_2$ Absorber Layer (Cu(InGa)$Se_2$ 광흡수막의 두께에 따른 태양전지의 전기광학 특성)

  • Kim, S.K.;Lee, J.C.;Kang, K.H.;Yoon, K.H.;Park, I.J.;Song, J.;Han, S.O.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.108-111
    • /
    • 2002
  • CIGS film has been fabricated on soda-lime glass, which is coated with Mo film. by multi-source evaporation process. The films has been prepared with thickness of 1.0 ${\mu}m$, 1.75${\mu}m$, 2.0${\mu}m$, 2.3${\mu}m$, and 3.0${\mu}m$. X-ray diffraction analysis with film thickness shows that CIGS films exhibit a strong (112) preferred orientation. Furthermore. CIGS films exhibited distinctly decreasing the full width of half-maximum and (112) preferred peak with film thickness. Also, The film's microstructure, such as the preferred orientation, the full width at half-maximum(FWHM), and the interplanar spacing were examined by X-ray diffraction. The preparation condition and the characteristics of the unit layers were as followings ; Mo back contact DC sputter, CIGS absorber layer : three-stage coevaporation, CdS buffer layer : chemical bath deposition, ZnO window layer : RF sputtering, $MgF_2$ antireflectance : E-gun evaporation

  • PDF

Design and Growth of InAs Multi-Quantum Dots and InGaAs Multi-Quantum Wells for Tandem Solar Cell (텐덤형 태양전지를 위한 InAs 다중 양자점과 InGaAs 다중 양자우물에 관한 연구)

  • Cho, Joong-Seok;Kim, Sang-Hyo;HwangBoe, Sue-Jeong;Janng, Jae-Ho;Choi, Hyon-Kwang;Jeon, Min-Hyon
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.5
    • /
    • pp.352-357
    • /
    • 2009
  • The InAs multi-quantum dots (MQDs) solar cell and InGaAs multi-quantum wells (MQWs) solar cell to cover 1.1 eV and 1.3 eV were designed by 1D poisson, respectively. The MQDs and MQWs of 5, 10, 15 layers were grown by molecular beam epitaxy. The photo luminescence results showed that the 5 period stacked MQDs have the highest intensity at around 1.1 eV with 57.6 meV full width at half maximum (FWHM). Also we can observe 10 period stacked MQWs peak position which has highest intensity at 1.31 eV with 12.37 meV FWHM. The density and size of QDs were observed by reflection high energy electron diffraction pattern and atomic force microscope. Futhermore, AlGaAs/GaAs sandwiched tunnel junctions were modified according to the width of GaAs layer on p-type GaAs substrates. The structures with GaAs width of 30 nm and 50 nm have backward diode characteristics. In contrast, tunnel diode characteristics were observed in the 20 nm of that of sample.

Organic-layer and semitransparent electrode thickness dependent optical properties of top-emission organic light-emitting diodes (전면 유기 발광 소자의 유기물층과 반투명 전극의 두께 변화에 따른 광학적 특성)

  • An, Hui-Chul;Joo, Hyun-Woo;Na, Su-Hwan;Han, Wone-Keun;Kim, Tae-Wan;Lee, Won-Jea;Chung, Dong-Hoe
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.57-58
    • /
    • 2008
  • We have studied an organic layer and semitransparent Al electrode thickness dependent optical properties and microcavity effects for top-emission organic light-emitting diodes. Manufactured top-emission device structure is Al(100nm)/TPD(xnm)/Alq(ynm)/LiF(0.5nm)/Al(25nm). While a thickness of total organic layer was varied from 85nm to 165n, a ratio of those two layers was kept to be about 2:3. Semitransparent Al cathode was varied from 20nm to 30nm for the device with an organic layer total thickness of 140nm. As the thickness of total organic layer increases, the emission spectra show a shift of peak wavelength from 490nm to 580nm, and the full width at half maxima from 90nm to 35nm. The emission spectra show a blue shift as the view angle increases. Emission spectra depending on a transmittance of semitransparent cathode show a shift of peak wavelength from 515nm to 593nm. At this time, the full width at half maximum was about to be a constant of 50nm. With this kind of microcavity effect, we were able to control the emission spectra from the top-emission organic light-emitting diodes.

  • PDF

Luminescence Properties of InAs/GaAs Quantum Dots Grown by MEE Method (MEE법으로 성장한 InAs/GaAs 양자점의 발광특성)

  • Oh, Jae Won;Byun, Hye Ryoung;Ryu, Mee-Yi;Song, Jin Dong
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.2
    • /
    • pp.92-97
    • /
    • 2013
  • The luminescence properties of InAs/GaAs quantum dots (QDs) grown by a migration enhanced epitaxy method have been investigated by using photoluminescence (PL) and time-resolved PL measurements. The MEE method supplies materials in a series of alternate depositions with migration enhancing time between each deposition. After In source was supplied for 9.3 s, the growth was interrupted for 5 s. Subsequently, As source was open for 3 (AT3), 4(AT4), 6 (AT6), or 9 s (AT9), and the growth was interrupted for 5 s again. This growth sequence was repeated 3 times for the growth of InAs QDs. The PL peak of the AT3 was 1,140 nm and the PL intensity was very weak compared with that of the other three samples. The PL peak of all samples except the AT3 sample was 1,118 nm, which is blueshifted from 1,140 nm, and the PL intensity was increased compared to that of the AT3. These results can be explained by the increased QD density and the improved QD uniformity. The AT6 sample showed the strongest PL intensity and the narrowest full width at half maximum. The PL decay time of AT6 increased with increasing emission wavelength from 940 to 1,126 nm, reaching a maximum decay time of 1.09 ns at 1,126 nm, and then decreased as the emission wavelength was increased further.

Reflectance spectrum properties of DBR and microcavity porous silicon (Distributed Bragg Reflector, Microcavity 구조를 갖는 다공질규소의 반사율 스펙트럼)

  • Kim, Young-You;Kim, Han-Jung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.6
    • /
    • pp.293-297
    • /
    • 2009
  • In this paper, we made three kinds of porous silicon samples (single layer, distributed Bragg reflector, and microcavity) by electrochemical etching p-type silicon substrate. And then, we investigated their reflectance spectrum properties. We found that the number of fringe patterns and the maximum reflectivity of porous silicon multilayer increased compared with a porous silicon sinlge layer. In addition, we can observe that the DBR (distributed Bragg reflector) porous silicon has a full-width at half-maximum about 33 nm which is narrower than the porous silicon single layer and porous silicon microcavity.

The Effects of Various Apodization Functions on the Filtering Characteristics of the Grating-Assisted SOI Strip Waveguides

  • Karimi, Azadeh;Emami, Farzin;Nozhat, Najmeh
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.101-109
    • /
    • 2014
  • In this paper, four apodization functions are proposed for silicon-on-insulator (SOI) strip waveguides with sidewall-corrugated gratings. The effects of apodization functions on the full width at half maximum (FWHM), the side-lobe level, and the reflectivity of the reflection spectrum are studied using the coupled-mode theory (CMT) and the transfer-matrix method (TMM). The results show that applying proposed apodization functions creates very good filtering characteristics. Among investigated apodized waveguides, the apodization functions of Polynomial and z-power have the best performance in reducing side-lobes, where the side-lobe oscillations are entirely removed. Four functions are also used for precise adjustment of the bandwidth. Simulation results show that the minimum and maximum values of the FWHM are 0.74 nm and 8.48 nm respectively. In some investigated functions, changing the apodization parameters decreases the reflectivity which is compensated by increasing the grating length.