• Title/Summary/Keyword: full scale structure

Search Result 448, Processing Time 0.033 seconds

Structural Assessment of Container ships Considering Hydroelastic Responses (컨테이너선의 유탄성 응답을 고려한 구조강도 평가 기술)

  • Park, Jun Seok;Choi, Byung Ki;Choi, Ju Hyuck;Jung, Byoung Hoon
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2017.10a
    • /
    • pp.80-87
    • /
    • 2017
  • This paper is related to structural assessment considering the hydroelastic response of ultra large container ships, especially from whipping (bow or stern impacts) and from springing (resonance). In general, whipping contributes both to increased fatigue and extreme loading, while springing does mainly contribute to increased fatigue loading. To evaluate the hydroelastic response quantitatively with high accuracy, numerical code considering hydro-structure coupling was applied and fatigue strength of a 13,100 TEU class containership was verified. The segmented model test and full scale measurement were also needed to assess the effect of whipping and springing on the fatigue and extreme capacity in more realistic way and for verification of the numerical tools. With reference to class rule, fatigue assessment considering springing effect and extreme assessment considering whipping effect were introduced.

  • PDF

Fatigue performance monitoring of full-scale PPC beams by using the FBG sensors

  • Wang, Licheng;Han, Jigang;Song, Yupu
    • Smart Structures and Systems
    • /
    • v.13 no.6
    • /
    • pp.943-957
    • /
    • 2014
  • When subjected to fatigue loading, the main failure mode of partially prestressed concrete (PPC) structure is the fatigue fracture of tensile reinforcement. Therefore, monitoring and evaluation of the steel stresses/strains in the structure are essential issues for structural design and healthy assessment. The current study experimentally investigates the possibility of using fiber Bragg grating (FBG) sensors to measure the steel strains in PPC beams in the process of fatigue loading. Six full-scale post-tensioned PPC beams were exposed to fatigue loading. Within the beams, the FBG and resistance strain gauge (RSG) sensors were independently bonded onto the surface of tensile reinforcements. A good agreement was found between the recorded results from the two different sensors. Moreover, FBG sensors show relatively good resistance to fatigue loading compared with RSG sensors, indicating that FBG sensors possess the capability for long-term health monitoring of the tensile reinforcement in PPC structures. Apart from the above findings, it can also be found that during the fatigue loading, there is stress redistribution between prestressed and non-prestressed reinforcements, and the residual strain emerges in the non-prestressed reinforcement. This phenomenon can bring about an increase of the steel stress in the non-prestressed reinforcement.

Pre-stress Effect of Geosynthetics-reinforced Soil Structure (토목섬유로 보강된 구조물의 프리스트레스효과)

  • Kim Eun-Ra;Kang Ho-Keun
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.6
    • /
    • pp.53-65
    • /
    • 2005
  • This paper presented a mechanism of the soil structure reinforced by geosynthetics, in which the reinforcing mechanism is treated as the effect arising from the reinforcement process to prevent the dilative deformation of soil under shearing. A full-scale in-situ model test was carried out by introducing the prestress method to enhance the geosynthetic-reinforcement, and the prestress effect through the FEM is also examined. The elasto-plastic model and the initial parameters needed in the FEM are presented. Moreover, the theoretical prediction is compared with the experimental results, which were obtained by a full-scale in-situ model test.

Blade Development and Test of WinDS$3000^{TM}$ System (WinDS$3000^{TM}$ 시스템의 블레이드 개발 및 시험)

  • Lee, Sang-Il;Lee, Kyeong-Woo;Joo, Wan-Don;Lee, Ki-Hak;Park, Jong-Po
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.448-448
    • /
    • 2009
  • A new blade has been developed to apply to Doosan 3MW offshore wind turbine named as WinDS3000TM. The 3MW blade has been designed by the concept of slim external shape and optimized structure. High-performance glass fiber reinforced epoxy composites were used as the main material of the blade. The blade was manufactured using vacuum infusion process in order to increase the fiber volume fraction and to reduce micro-porosities. The blade has successfully passed the full-scale blade static test for certification. During the test, micro-failure signal and strain change of the blade were measured using acoustic emission sensors and strain gages. The blade has robust structure and weighs lighter compared to conventional blade since the new blade was designed by optimization process. The 3MW blade will be commercially applied to WinDS$3000^{TM}$ in 2010.

  • PDF

Long-term simulation of wind turbine structure for distributed loading describing long-term wind loads for preliminary design

  • Ibrahimbegovic, Adnan;Boujelben, Abir
    • Coupled systems mechanics
    • /
    • v.7 no.2
    • /
    • pp.233-254
    • /
    • 2018
  • In order to reduce the dependency on fossil fuels, a policy to increase the production capacity of wind turbine is set up. This can be achieved with increasing the dimensions of offshore wind turbine blades. However, this increase in size implies serious problems of stability and durability. Considering the cost of large turbines and financial consequences of their premature failure, it is imperative to carry out numerical simulations over long periods. Here, an energy-conserving time-stepping scheme is proposed in order to ensure the satisfying computation of long-term response. The proposed scheme is implemented for three-dimensional solid based on Biot strain measures, which is used for modeling flexible blades. The simulations are performed at full spatial scale. For reliable design process, the wind loads should be represented as realistically as possible, including the fluid-structure interaction (FSI) dynamic effects on wind turbine blades. However, full-scale 3D FSI simulations for long-term wind loading remain of prohibitive computation cost. Thus, the model to quantify the wind loads proposed here is a simple, but not too simple to be representative for preliminary design studies.

Numerical Analysis of Geosynthetics-Reinforced Soil Structure with Pre-stress (프리스트레스 방법을 적용한 토목섬유 보강토 구조물의 수치해석)

  • Kim, Eun-Ra;Kim, You-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.4 no.3
    • /
    • pp.21-33
    • /
    • 2005
  • This paper presented a mechanism of the soil structure reinforced by geosynthetics, in which the reinforcing mechanism is treated as the effect arising from the reinforcement process to prevent the dilative deformation of soil under shearing. A full-scale in-situ model test was carried out by introducing the prestress method to enhance the geosynthetic-reinforcement, and the prestress effect through the FEM is also examined. The elasto-plastic model and the initial parameters needed in the FEM are presented. Moreover, the theoretical prediction is compared with the experimental results, which were obtained by a full-scale in-situ model test.

  • PDF

The development of a field measurement instrumentation system for low-rise construction

  • Porterfield, Michelle L.;Jones, Nicholas P.
    • Wind and Structures
    • /
    • v.4 no.3
    • /
    • pp.247-260
    • /
    • 2001
  • In the last three decades several comprehensive field measurement programs have produced significant insight into the wind effects on low-rise structures. The most notable and well published of these efforts are measurements being collected at the Wind Engineering Field Laboratory (WERFL) at Texas Tech University, measurements on low-rise structures in Silsoe, England and measurements on groups of low-rise structures collected in Aylesbury, England. Complementary to these efforts, an additional full-scale field investigation program has recently collected meteorological, pressure, strain and displacement data on a low-rise structure in Southern Shores, North Carolina. To date over seventy-five hundred data sets have been collected at the Southern Shores site in a variety meteorological conditions up to and including hurricane-force winds. This paper provides details of the system, its development, and preliminary assessment of its performance. A description of the field site, the instrumented structure, and the instrumentation system is provided. In addition, an example of the data collected during three hurricanes is presented. The primary goal of this paper is to provide the reader with the necessary technical details to appropriately interpret data from this experiment, which will be presented in future publications currently under development.

A FEA for the Stiffness Estimation of the Transverse Kong-Po in Dae-Woong-Jeon of Bongjeong-Sa (봉정사 대웅전 보 방향 공포의 강성산정을 위한 유한요소해석)

  • Jung Sung-Jin;Hong Sung-Gul;Kim Nam-Hee;Lee Young-Wook;Hwang Jong-Kook;Bae Byoung-Sun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.405-412
    • /
    • 2006
  • Among the various problems involved in the structural analysis of the Korean traditional wooden structure, the analytical model for the Kong-Po is controversial subject as usual. While some experiments are tried for establishing the basis of analytical models, most of these experiments are performed using scale down specimens. So, it is not possible to apply these experimental results to structural analysis of Korean traditional wooden structure directly. A numerical study for analogizing the stiffness of full scale Kong-Po structure is performed on the basis of experimental specimen. Some parameter studies using finite element method are made in this study. The finite element analysis used in this study is geometric material nonlinear analysis. The stiffness of Kong-Po structure found out in this study can be used for modelling the joints of the Korean traditional wood structure in frame analysis.

  • PDF

Development of a 14.1 inch Full Color AMOLED Display with Top Emission Structure

  • Jung, J.H.;Goh, J.C.;Choi, B.R.;Chai, C.C.;Kim, H.;Lee, S.P.;Sung, U.C.;Ko, C.S.;Kim, N.D.;Chung, K.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.793-796
    • /
    • 2005
  • A structure and a design of device were developed to fabricate large-scale active matrix organic light-emitting diode (AMOLED) display with good color purity and high aperture ratio. With these technologies, we developed a full color 14.1 inch WXGA AMOLED display. For the integration of OLED on an active matrix a-Si TFT backplane, an efficient top emission OLED is essential since the TFT circuitry covers a large position of the pixel aperture. These technologies will enable up the OLED applications to larger size displays such as desktop monitors and TVs.

  • PDF

A study on rotational behaviour of a new industrialised building system connection

  • Moghadasi, Mostafa;Marsono, Abdul Kadir;Mohammadyan-Yasouj, Seyed Esmaeil
    • Steel and Composite Structures
    • /
    • v.25 no.2
    • /
    • pp.245-255
    • /
    • 2017
  • The performance of an Industrialised Building System (IBS) consists of prefabricated reinforced concrete components, is greatly affected by the behaviour of the connection between beam and columns. The structural characteristics parameters of a beam-to-column connection like rotational stiffness, strength and ductility can be explained by load-rotation relationship of a full scale H-subframe under gravitational load. Furthermore, the connection's degree of rigidity directly influences the behaviour of the whole frame. In this research, rotational behaviour of a patented innovative beam-to-column connection with unique benefits like easy installation, no wet work, no welding work at assembly site, using a hybrid behaviour of steel and concrete, easy replacement ability, and compatibility with architecture was investigated. The proposed IBS beam-to-column connection includes precast concrete components with embedded steel end connectors. Two full-scale H-subframes constructed with a new IBS and conventional cast in-situ reinforced concrete system beam-to-column connections were tested under incremental static loading. In this paper, load-rotation relationship and ratio of the rigidity of IBS beam-to-column connection are studied and compared with conventional monolithic reinforced concrete connection. It is concluded that this new IBS beam-to-column connection benefits from more rotational ductility than the conventional reinforced concrete connection. Furthermore, the semi-rigid IBS connection rigidity ratio is about 44% of a full rigid connection.