• 제목/요약/키워드: full ratio

검색결과 1,277건 처리시간 0.031초

An enhanced analytical calculation model based on sectional calculation using a 3D contour map of aerodynamic damping for vortex induced vibrations of wind turbine towers

  • Dimitrios Livanos;Ika Kurniawati;Marc Seidel;Joris Daamen;Frits Wenneker;Francesca Lupi;Rudiger Hoffer
    • Wind and Structures
    • /
    • 제38권6호
    • /
    • pp.445-459
    • /
    • 2024
  • To model the aeroelasticity in vortex-induced vibrations (VIV) of slender tubular towers, this paper presents an approach where the aerodynamic damping distribution along the height of the structure is calculated not only as a function of the normalized lateral oscillation but also considering the local incoming wind velocity ratio to the critical velocity (velocity ratio). The three-dimensionality of aerodynamic damping depending on the tower's displacement and the velocity ratio has been observed in recent studies. A contour map model of aerodynamic damping is generated based on the forced vibration tests. A sectional calculation procedure based on the spectral method is developed by defining the aerodynamic damping locally at each increment of height. The proposed contour map model of aerodynamic damping and the sectional calculation procedure are validated with full-scale measurement data sets of a rotorless wind turbine tower, where good agreement between the prediction and measured values is obtained. The prediction of cross-wind response of the wind turbine tower is performed over a range of wind speeds which allows the estimation of resulting fatigue damage. The proposed model gives more realistic prediction in comparison to the approach included in current standards.

Seismic risk priority classification of reinforced concrete buildings based on a predictive model

  • Isil Sanri Karapinar;Ayse E. Ozsoy Ozbay;Emin Ciftci
    • Structural Engineering and Mechanics
    • /
    • 제91권3호
    • /
    • pp.279-289
    • /
    • 2024
  • The purpose of this study is to represent a useful alternative for the preliminary seismic vulnerability assessment of existing reinforced concrete buildings by introducing a statistical approach employing the binary logistic regression technique. Two different predictive statistical models, namely full and reduced models, were generated utilizing building characteristics obtained from the damage database compiled after 1999 Düzce earthquake. Among the inspected building parameters, number of stories, overhang ratio, priority index, soft story index, normalized redundancy ratio and normalized lateral stiffness index were specifically selected as the predictor variables for vulnerability classification. As a result, normalized redundancy ratio and soft story index were identified as the most significant predictors affecting seismic vulnerability in terms of life safety performance level. In conclusion, it is revealed that both models are capable of classifying the set of buildings being severely damaged or collapsed with a balanced accuracy of 73%, hence, both are able to filter out high-priority buildings for life safety performance assessment. Thus, in this study, having the same high accuracy as the full model, the reduced model using fewer predictors is proposed as a simple and viable classifier for determining life safety levels of reinforced concrete buildings in the preliminary seismic risk assessment.

다른 축척비를 가진 KLNG 선형주위 유동장 시뮬레이션 (Numerical Simulation of Turbulent Flow around KLNG Hull Form with Different Scale Ratio)

  • 하윤진;이영길;강봉한
    • 대한조선학회논문집
    • /
    • 제51권1호
    • /
    • pp.8-15
    • /
    • 2014
  • In this study, flow characteristics around the hull form of KLNG are investigated by numerical simulations. The numerical simulations of the turbulent flows with the free surface around KLNG have been carried out at Froude number 0.1964 using the FLUENT 6.3 solver with Reynolds stress turbulence model. Several GEOSIM models are adopted to consider the scale effect attendant on Reynolds number. Furthermore, a full scale ship is calculated and the result is compared with the numerical results of GEOSIM models. The calculated results of GEOSIM models and the full scale ship are compared with the experiment data of MOERI towing tank test and Inha university towing tank test. Moreover, wake distribution on the propeller plane of the full scale ship is estimated using the numerical results of GEOSIM models. The prediction result is directly compared with the simulation result in full scale.

Compression characteristics of filling gangue and simulation of mining with gangue backfilling: An experimental investigation

  • Wang, Changxiang;Shen, Baotang;Chen, Juntao;Tong, Weixin;Jiang, Zhe;Liu, Yin;Li, Yangyang
    • Geomechanics and Engineering
    • /
    • 제20권6호
    • /
    • pp.485-495
    • /
    • 2020
  • Based on the movement characteristics of overlying strata with gangue backfilling, the compression test of gangue is designed. The deformation characterristics of gangue is obtained based on the different Talbot index. The deformation has a logarithmic growth trend, including sharp deformation stage, linear deformation stage, rheological stage, and the resistance to deformation changes in different stages. The more advantageous Talbot gradation index is obtained to control the surface subsidence. On the basis of similarity simulation test with gangue backfilling, the characteristics of roof failure and the evolution of the supporting force are analyzed. In the early stage of gangue backfilling, beam structure damage directly occurs at the roof, and the layer is separated from the overlying rock. As the working face advances, the crack arch of the basic roof is generated, and the separation layer is closed. Due to the supporting effect of filling gangue, the stress concentration in gangue backfilling stope is relatively mild. Based on the equivalent mining height model of gangue backfilling stope, the relationship between full ratio and mining height is obtained. It is necessary to ensure that the gradation of filling gangue meets the Talbot distribution of n=0.5, and the full ratio meets the protection grade requirements of surface buildings.

Seismic behavior of full-scale square concrete filled steel tubular columns under high and varied axial compressions

  • Phan, Hao D.;Lin, Ker-Chun
    • Earthquakes and Structures
    • /
    • 제18권6호
    • /
    • pp.677-689
    • /
    • 2020
  • A building structural system of moment resisting frame (MRF) with concrete filled steel tubular (CFST) columns and wide flange H beams, is one of the most conveniently constructed structural systems. However, there were few studies on evaluating seismic performance of full-scale CFST columns under high axial compression. In addition, some existing famous design codes propose various limits of width-to-thickness ratio (B/t) for steel tubes of the ductile CFST composite members. This study was intended to investigate the seismic behavior of CFST columns under high axial load compression. Four full-scale square CFST column specimens with a B/t of 42 were carried out that were subjected to horizontal cyclic-reversal loads combined with constantly light, medium and high axial loads and with a linearly varied axial load, respectively. Test results revealed that shear strength and deformation capacity of the columns significantly decreased when the axial compression exceeded 0.35 times the nominal compression strength of a CFST column, P0. It was obvious that the higher the axial compression, the lower both the shear strength and deformation capacities were, and the earlier and faster the shear strength degradation occurred. It was found as well that higher axial compressions resulted in larger initial lateral stiffness and faster degradation of post-yield lateral stiffness. Meanwhile, the lower axial compressions led to better energy dissipation capacities with larger cumulative energy. Moreover, the study implied that under axial compressions greater than 0.35P0, the CFST column specimens with B/t limits recommended by AISC 360 (2016), ACI 318 (2014), AIJ (2008) and EC4 (2004) codes do not provide ultimate interstory drift ratio of more than 3% radian, and only the limit in ACI 318 (2014) code satisfies this requirement when axial compression does not exceed 0.35P0.

A novel preloading method for foundation underpinning for the remodeling of an existing building

  • Wang, Chengcan;Han, Jin-Tae;Kim, Seokjung;Jang, Young-Eun
    • Geomechanics and Engineering
    • /
    • 제24권1호
    • /
    • pp.29-42
    • /
    • 2021
  • The utilization of buildings can be improved by extending them vertically. However, the added load of the extension might require building foundations to be underpinned; otherwise, the loads on the foundations might exceed their bearing capacity. In this study, a preloading method was presented aiming at transferring partial loads from existing piles to underpinning piles. A pneumatic-type model preloading device was developed and used to carry out centrifuge experiments to evaluate the load-displacement behavior of piles, the pile-soil interaction during preloading, and the additional loading caused by vertical extension. The results showed that the preloading devices effectively transfer load from existing piles to underpinning piles. In the additional loading test of group piles, the load-sharing ratio of a pile increased with its stiffness. The load-sharing ratio of a preloaded micropile was less than that of a non-preloaded micropile as a result of the reduction in axial stiffness caused by preloading before additional loading. Therefore, a slight reduction of the load-sharing capacity of an underpinning pile should be considered if the preloading method is applied. Further, two full scale preloading devices was developed. The devices preload underpinning piles and thereby produce reaction forces on a reaction frame to jack existing piles upward, thus transferring load from the existing piles to the underpinning piles. Specifically, screw-type and hydraulic-jack type devices were developed for the practical application of foundation underpinning during vertical extension, and their operability and load transfer effect verified via full-scale structural experiments.

Practical scaling method for underwater hydrodynamic model test of submarine

  • Moonesun, Mohammad;Mikhailovich, Korol Yuri;Tahvildarzade, Davood;Javadi, Mehran
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권10호
    • /
    • pp.1217-1224
    • /
    • 2014
  • This paper provides a practical scaling method to solve an old problem for scaling and developing the speed and resistance of a model to full-scale submarine in fully submerged underwater test. In every experimental test in towing tank, water tunnel and wind tunnel, in the first step, the speed of a model should be scaled to the full-scale vessel (ship or submarine). In the second step, the obtained resistance of the model should be developed. For submarine, there are two modes of movement: surface and submerged mode. There is no matter in surface mode because, according to Froude's law, the ratio of speed of the model to the full-scale vessel is proportional to the square root of lengths (length of the model on the length of the vessel). This leads to a reasonable speed and is not so much for the model that is applicable in the laboratory. The main problem is in submerged mode (fully submerged) that there isn't surface wave effect and therefore, Froude's law couldn't be used. Reynold's similarity is actually impossible to implement because it leads to very high speeds of the model that is impossible in a laboratory and inside the water. According to Reynold's similarity, the ratio of speed of the model to the full-scale vessel is proportional to the ratio of the full-scale length to the model length that leads to a too high speed. This paper proves that there is no need for exact Reynold's similarity because after a special Reynolds, resistance coefficient remains constant. Therefore, there is not compulsion for high speeds of the model. For proving this finding, three groups of results are presented: two cases are based on CFD method, and one case is based on the model test in towing tank. All these three results are presented for three different shapes that can show; this finding is independent of the shapes and geometries. For CFD method, Flow Vision software has been used.

'브라이트웰' 래빗아이 블루베리의 Ammonium thiosulfate와 UREA처리에 따른 적화와 과실생장 효과 (Effects of ATS and UREA on Flower Thinning and Fruit Growth in 'Brightwell' Rabbiteye Blueberry)

  • 김홍림;이목희;이하경;정경호;이한철
    • 한국환경농학회지
    • /
    • 제39권4호
    • /
    • pp.360-367
    • /
    • 2020
  • BACKGROUND: The productivity and quality of blueberry (Vaccinium ashei Reade) greatly depend on the number of fruits in a plant. Especially, fruit set more than appropriate number negatively affects productivity and marketability due to the increased number of small fruits and delayed harvest time. This study was conducted to investigate proper timing and concentration for applying chemical blossom thinners such as ammonium thiosulfate (ATS) and UREA. METHODS AND RESULTS: ATS at 1.25% and 1.50%, and UREA at 6% and 8% were applied in four developmental stages, bud swell, pink bud, full bloom and petal fall. Fruit thinning rate was calculated based on the number of fruits harvested divided by that of flowers before applying blossom thinners. Ratios of leaf to flower and leaf to fruit were calculated based on the number of fully developed leaves in 25 days after full blossom divided by that of flowers or fruits, respectively. Chemical injury of leaves was investigated by calculating the number of leaves with chemical injury divided by the total number of leaves. Fruit thinning rates were 48% and 66% for UREA treatments at 6% and 8%, respectively, and 49% and 62% for ATS treatments at 1.25% and 1.50%, respectively, in the full bloom stage. In the petal fall stage, fruit thinning rates were 18% and 24% for UREA treatments at 6% and 8%, respectively, and 49% and 35% for ATS treatments at 1.25% and 1.50%, respectively. Leaf to fruit ratio (L/FR) increased by 109% and 188% compared to leaf to flower ratio in ATS treatments at 1.25% and 1.50%, respectively, and L/FR increased 93 and 196% in UREA treatments at 6% and 8%, respectively, in the full bloom stage. In the petal fall stage, leaf to fruit ratio increased by 60% to 100% in ATS treatments, but did not significantly differ from the control in UREA treatments. Fruit harvest was delayed in all treatments of all developmental stages except for 1.5% ATS and 6% UREA treatments at the petal fall stage, whose fruit harvest was two or three days faster than the control. CONCLUSION: The application of ATS and UREA for blossom thinning should be in the petal fall and full bloom stages for early and late harvest, respectively. Considering chemical injury, integrated harvesting and fruit size, however, it is appropriate to apply ATS at 1.5% in the petal fall stage to increase fruit productivity and quality in blueberry.

강도비를 적용한 Rice-저항곡선과 변형경화를 고려한 $J_{\delta}$-저항곡선과의 비교 (On Reliability and Comparison of $J_{Rice}$-Resistance considering Optimal Strength Ratio and $J_{\delta}$-Resistance Curves converted from CTOD using Appropriate Strength chosen according to Strain Hardening Level)

  • 장석기
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권1호
    • /
    • pp.59-67
    • /
    • 2002
  • The comparison of $J_{Rice}$-resistance considering a few strength ratio in Rice J-integral formula and $J_{\delta}$-resistance curves converted from experimental CTOD using appropriate strength chosen according to strain hardening level, n=10.6 (A533B steel) and n=8.1 (BS4360 steel) is carried out. The optimal dimensionless strength ratio like the factor of revision, (see full text)reflecting strain hardening level in Rice\`s experimental formula is found out and the reliability of appropriate reference strength chosen according to strain hardening level in different materials is investigated through doing that CTOD is transformed from $J_{\delta}$-integral using relationship between J-integral and CTOD. The results are as follows; 1) The optimal factor of revision is when m equals to 3 in (see full text) for Rice's and the above optimal factor of revision multiplies by coefficient, η in Rice's experimental formula instead of n=2, 2) and the pertinent reference strength for high strain hardening material like BS4360 steel is ultimate strength, $\sigma_{u}$ and for material like A533B steel is ultimate-flow strength, $\sigma_{u-f}$. The incompatible of the behavior of both experimental J-resistance curves using Rice's formula and CTOD-resistance curves for A533B and BS4360 steel by Gordon, et al., could be corrected using the optimal factor of revision in Rice\`s and the pertinent reference strength in J=$m_{j}$${\times}$$\sigma_{i}$${\times}$CTOD.

Optimization Using 33 Full-Factorial Design for Crude Biosurfactant Activity from Bacillus pumilus IJ-1 in Submerged Fermentation

  • Kim, Byung Soo;Kim, Ji Yeon
    • 한국미생물·생명공학회지
    • /
    • 제48권1호
    • /
    • pp.48-56
    • /
    • 2020
  • This study aimed to optimize the culture conditions to improve the crude biosurfactant activity of Bacillus pumilus IJ-1, using a 33 full-factorial design of response surface methodology (RSM). It was found that submerged fermentation of B. pumilus improved the activity of the crude biosurfactant. The factors selected for optimization were NaCl concentration, temperature, and tryptone concentration. Response surface analysis revealed that the fitted quadratic model was statistically significant and produced an adequate R2 value (0.9898) and a low probability value (<0.0001). The optimum level for each factor was found to be 0.567% (w/v) NaCl, 21.851℃ and 0.765% (w/v) tryptone, respectively. Crude biosurfactant activity was found to be most affected by tryptone concentration; then temperature, and finally NaCl concentration. Our results may potentially facilitate large-scale biosurfactant production from B. pumilus IJ-1.