• 제목/요약/키워드: fuel cell vehicles

검색결과 249건 처리시간 0.022초

경전철용 연료전지 하이브리드 동력시스템 설계 및 제어 (Design and Control Strategy of Fuel Cell Hybrid Power System for Light Electric Railway Vehicles)

  • 김영렬;박영원
    • 한국철도학회논문집
    • /
    • 제12권5호
    • /
    • pp.772-777
    • /
    • 2009
  • 지구 온난화를 경감 하기위한 차세대 동력시스템으로서 연료전지 동력시스템은 승용차를 중심으로 활발하게 개발되고 있다. 가선이 설치되어있지 않은 철로에서의 철도차량의 경우에 있어서도 연료전지 동력시스템의 적용이 선진 각국을 중심으로 연구개발 되고 있다. 본 논문에서는 가속, 타행주행 및 감속을 반복하여 주행하는 경전철에 대하여 연료전지 하이브리드 동력시스템을 적용하고자 할 때 이에 대한 설계 및 제어전략을 논하였고, Matlab/Simulink로 모델링하여 시뮬레이션을 수행하였다.

연료전지 하이브리드 자동차의 ECMS (Equivalent Consumption Minimization Strategy of Fuel Cell Hybrid Vehicles)

  • 정춘화;박영일;임원식;차석원
    • 한국자동차공학회논문집
    • /
    • 제20권6호
    • /
    • pp.46-51
    • /
    • 2012
  • Fuel Cell Hybrid Vehicles (FCHVs) have become a major topic of interest in the automotive industry owing to recent energy supply and environmental problems. Several types of power management strategies have been developed to improve the fuel economy of FCHVs including optimal control strategy based on optimal control theory, rule-based strategy, and equivalent consumption minimization strategy (ECMS). The ECMS is applied in this study. This strategy is based on the heuristic concept that the usage of the electric energy can be exchanged to equivalent fuel consumption. This strategy is known as one of the promising solutions for real-time control of hybrid vehicles. The ECMS for an FCHV is introduced in this paper as well as the equivalent fuel consumption parameter. The relationship between the battery final state of charge (SOC) and the fuel consumption while changing the equivalent fuel consumption parameter is obtained for three different driving cycles. The function of the equivalent fuel consumption parameter is also discussed.

Transient Performance of a Hybrid Electric Vehicle with Multiple Input DC-DC Converter

  • Nashed, Maged N.F.
    • Journal of Power Electronics
    • /
    • 제3권4호
    • /
    • pp.230-238
    • /
    • 2003
  • Electric vehicles (EV) demands for greater acceleration, performance and vehicle range in pure electric vehicles plus mandated requirements to further reduce emissions in hybrid electric vehicles (HEV) increase the appeal for combined on-board energy storage systems and generators. And the power electronics plays an important role in providing an interface between fuel cells (FC) and loads. This paper deals with a multiple input DC-DC power converter devoted to combine the power flowing of multi-source on energy systems. The multi-source is composed of (i) FC system as a prime power demands, (ii) super capacitor banks as energy storage devices for high and intense power demands, (iii) superconducting magnetic energy storage system (SMES), (iv) multiple input DC-DC power converter and (v) a three phase inverter-fed permanent magnet synchronous motor as a drive. In this system, It is used super capacitor banks and superconducting magnetic energy replaces from the battery system. The modeling and transient performance simulation is effective for reducing transient influence caused by sudden charge of effective load. The main purpose of power electronic converters is to convert the DC power output from the fuel cell and other to a suitable AC voltage, which can be connected to electric loads directly (PMSM). The fuel cell and other output is connected to the DC-DC converter, which regulates the DC link voltage.

시뮬레이션 기반 연료전지/2차전지 하이브리드 미니버스의 설계 및 성능 평가 (Design and Performance Evaluation for a Fuel Cell/Battery Hybrid Mini-Bus Based on a Simulation)

  • 김민진;공낙원;이원용;김창수
    • 한국수소및신에너지학회논문집
    • /
    • 제18권1호
    • /
    • pp.60-66
    • /
    • 2007
  • In terms of the vehicle efficiency, a fuel cell hybrid system has advantages compared to a conventional internal combustion engine and a fuel cell alone-powered system. The efficiency of the fuel cell hybrid vehicle mainly depends on the maximum power of the fuel cell and therefore it is important to decide the design value of the fuel cell maximum power. In this paper, to estimate the performance of the fuel cell hybrid mini-bus in the design phase the simulator based on the models for the fuel cell stack, the electric battery, the fuel cell balance of plant, the controller, and the vehicle itself is proposed. Additionally, the hybrid mini-bus efficiencies with several different fuel cell powers are simulated for a city driving schedule and are compared on another. Consequently, the proposed simulation scheme is useful to determine the best design value of the fuel cell hybrid vehicles.

구조 안전성을 고려한 수소 연료 전지차 용기 밸브의 솔레노이드 액추에이터 설계 (Design of Solenoid Actuator for FCV Cylinder Valve Considering Structural Safety)

  • 이효렬;안중환;신진오;김화영
    • 한국생산제조학회지
    • /
    • 제25권3호
    • /
    • pp.157-163
    • /
    • 2016
  • Green vehicles include electric vehicles, natural gas vehicles, fuel cell vehicles (FCV), and vehicles running on fuel such as a biodiesel or an ethanol blend. An FCV is equipped with a cylinder valve installed in an ultra-high pressure vessel to control the hydrogen flow. For this purpose, an optimum design of the solenoid actuator is necessary to ensure reliability when driving an FCV. In this study, an electromagnetic field analysis for ensuring reliable operation of the solenoid actuator was conducted by using Maxwell V15. The electromagnetic field analysis was performed by magnetostatic technique, according to the distance between magnetic poles in order to predict the attraction force. Finally, the attraction force was validated through comparison between the Maxwell results and measurement results. From the results, the error of attraction force ranged from 4.53 % to 9.05 % at testing conditions.

600 W급 연료전지(PEMFC)의 설계 및 제작 (Design and Development of 600 W Proton Exchange Membrane Fuel Cell)

  • 김주곤;정현열;;소비 토마스;손병락;;이동하
    • 한국태양에너지학회 논문집
    • /
    • 제34권4호
    • /
    • pp.17-22
    • /
    • 2014
  • The design of a fuel cells stack is important to get optimal output power. This study focuses on the evaluation of fuel cell system for unmaned aerial vehicles (UAVs). Low temperature proton exchange membrane (LTPEM) fuel cells are the most promising energy source for the robot applications because of their unique advantages such as high energy density, cold startup, and quick response during operation. In this paper, a 600 W open cathode LTPEM fuel cell was tested to evaluate the performance and to determine optimal operating conditions. The open cathode design reduces the overall size of the system to meet the requirement for robotic application. The cruise power requirement of 600 W was supported entirely by the fuel cell while the additional power requirements during takeoff was extended using a battery. A peak of power of 900 W is possible for 10 mins with a lithium polymer (LiPo) battery. The system was evaluated under various load cycles as well as start-stop cycles. The system response from no load to full load meets the robot platform requirement. The total weigh of the stack was 2 kg, while the overall system, including the fuel processing system and battery, was 4 kg.

연료전지 축전지 복합 동력원의 구동 특성 (Analysis of the FuelCell Battery Hybrid Power System)

  • 이봉도;신동열
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 B
    • /
    • pp.1322-1324
    • /
    • 2001
  • FuelCell/Battery hybrid power systems were studied to develop high efficient zero-emission fuel cell electric vehicles. Fuel cells were used as an auxiliary energy source and batteries were used as a transient power source. The fuel cell system is used to supply the average power demand. Dynamic response of the hybrid systems was simulated using PSPICE program and also tested experimentally. The results can be used to design the interface module and to determine the power requirement between the fuel cell unit and the battery pack.

  • PDF

연료전지 하이브리드 자동차에 대한 퍼지논리 기반 에너지 운용전략 (Fuzzy Logic-Based Energy Management Strategy for FCHEVs)

  • 안현식;이남수
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제54권12호
    • /
    • pp.713-715
    • /
    • 2005
  • The work in this paper presents development of fuzzy logic-based energy management strategy for a fuel cell hybrid electric vehicle. In order for the fuel cell system to overcome the inherent limitation such as slow response time and low fuel economy especially at the low power region, the battery system has come to compensate for the fuel cell system. This type of hybrid configuration has many advantages, however, the energy management strategy between power sources is essentially required. For the optimal power distribution between the fuel cell system and the battery system, a fuzzy logic-based energy management strategy is proposed. In order to show the validity and the robustness of suggested strategy, some simulations are performed for the standard drive cycles.

연료전지 축전지 하이브리드 동력원의 접속 특성 분석 (Load Analysis of the FuelCell/Battery Hybrid Power System)

  • 이봉도;이원용
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.3081-3083
    • /
    • 2000
  • Fuel cell/battery hybrid power systems were studied to develop high efficient zero-emission fuel cell electric vehicles, Fuel cells were used as an auxiliary energy source and batteries were used as a transient power source. The fuel cell system is used to supply the average power demand. Dynamic response of the hybrid systems was simulated using PSPICE program and also tested experimentally, The results can be used to design the interface module and to determine the power requirement between the fuel cell unit and the battery pack.

  • PDF

FCEV용 HDC 고효율 운전을 위한 소프트 스위칭 셀 최적 설계 방안 (Optimal Design of Soft-Switching Cell for High Efficiency and High Power Density for HDC of FCEVs)

  • 김소영;노태원;이재형;안정훈;이병국
    • 전력전자학회논문지
    • /
    • 제23권3호
    • /
    • pp.217-224
    • /
    • 2018
  • In this study, the optimal design methods of soft-switching cell for high-voltage DC-DC converter (HDC) of fuel cell electric vehicles (FCEVs) is proposed for high efficiency and high power density. The appropriate soft-switching cell for FCEVs is chosen by analyzing the losses of HDC which adopts soft-switching cell. The proposed optimal design methods for the soft-switching cell are divided into two purposes which are improvement of efficiency and power density. Two kinds of design methods enable to improve fuel efficiency and cost, respectively. The proposed design methods are validated with the experimental results based on the specification and hardware used in actual FCEVs.