• 제목/요약/키워드: fuel cell vehicles

검색결과 252건 처리시간 0.027초

고분자 전해질 연료전지에서 $TiO_2$-Nafion 혼합막에 관한 연구 (A Study on $TiO_2$/Nafion composite membrane in PEMFC)

  • 김미림;김태영;김성수;민병준;조성용
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.88.2-88.2
    • /
    • 2011
  • Proton exchange memb rane fuel cell has been considered one of the next generation power source for electric vehicles due to high power density and low emissions. $TiO_2$/Nafion composite was prepared by the in-situ sol-gel method. The electrochemical characteristics of the $TiO_2$-Nafion composite membrane were evaluated by current-voltage and impedance of the membrane eletrode assembly in a single Proton exchange membrane fuel cell (PEMFC).

  • PDF

First Principles Computational Study of Surface Reactions Toward Design Concepts of High Functional Electrocatalysts for Oxygen Reduction Reaction in a Fuel Cell System

  • Hwang, Jeemin;Noh, Seunghyo;Kang, Joonhee;Han, Byungchan
    • 한국표면공학회지
    • /
    • 제50권1호
    • /
    • pp.1-9
    • /
    • 2017
  • Design of novel materials in renewable energy systems plays a key role in powering transportation vehicles and portable electronics. This review introduces the research work of first principles-based computational design for the materials over the last decade to accomplish the goal with less financial and temporal cost beyond the conventional approach, especially, focusing on electrocatalyst toward a proton exchange membrane fuel cell (PEMFC). It is proposed that the new method combined with experimental validation, can provide fundamental descriptors and mechanical understanding for optimal efficiency control of a whole system. Advancing these methods can even realize a computational platform of the materials genome, which can substantially reduce the time period from discovery to commercialization into markets of new materials.

연료전지 차량을 위한 공기가습 조절법에 대한 연구 (Study on Air Humidification Control Method for Fuel Cell Vehicles)

  • 아궁 박티르;최광환
    • 한국태양에너지학회 논문집
    • /
    • 제31권5호
    • /
    • pp.91-98
    • /
    • 2011
  • 연료전지 차랑용에 있어서 공기 가습 및 감습의 중요성은 매우 크다. 특히 PEM(Proton Exchange Membrane)연료전지에서 수분평형은 총괄시스템성능에 큰 영향을 미치는 요소인데, 이에 관한 중요한 연구가 지금까지 광범위하게 수행되고 있다. 또한 차량과 같이 동적부하 연료전지를 활용하는 분야에 있어서, 전류의 흐름은 차량용 파워 부하에 크게 영향을 받는다. 따라서 전기적 흐름이 발생하면, 이에 따라 수분이 발생하게 되는데, 이러한 응축 수분은 예측이 되며, 수관리 시스템에서 이를 중요한 제어 기준으로 활용한다. 그러므로 적절한 제어방법을 선택하면 유입공기의 온도와 습도의 최적값을 얻을 수 있다. 따라서, 본 논문에서는 PEM 연료전지의 수관리를 위하여 수분전달 모델과 유전알고리즘(genetic algorithm)을 사용하는 제어방법에 초점을 두고 있다.

연료전지 발전시스템을 이용한 철도급전계통 모델링 (Feed System Modeling of Railroad using Fuel Cell Power Generation System)

  • 윤용호
    • 한국인터넷방송통신학회논문지
    • /
    • 제20권4호
    • /
    • pp.195-200
    • /
    • 2020
  • 화석연료 고갈과 환경오염에 관한 관심이 고조되면서 국내에서 운행되고 있는 철도차량이 디젤 차량에서 전기 차량으로 전환이 확대되면서 진행되고 있다. 전기 차량의 전환의 한 예로 적용되고 있는 태양광발전 시스템은 무한정하고 무공해 하며 대기오염, 소음, 발열, 진동 등과 같은 위해요소들을 발생시키지 않고 에너지 생산이 가능하며, 연료 수송, 발전설비에 대한 유지보수가 거의 필요하지 않은 장점이 있다. 그러나 전력생산량이 지역별 일사량에 의존하고, 약 25㎡/kWp 발전량으로 에너지밀도가 낮아 큰 설치 면적이 필요하며, 설치장소가 제한적인 문제점을 가지고 있다. 이러한 문제점을 고려하여 철도 분야에서도 연료전지를 적용한 연구들이 많이 증가하고 있다. 특히 연료전지 발전시스템 철도 급전계통 연계방안은 태양광 및 풍력과는 다르게 철도차량에 전력을 공급해주는 급전계통에 연계해야 한다. 따라서 철도차량과 밀접한 관계를 가지는 시스템 토폴로지 (topology)에 따라 연계방식은 크게 달라질 수 있으므로 본 논문에서는 시스템 토폴로지에 따른 연계분석과 관련된 시뮬레이션 모델링을 통한 타당성을 연구하고자 한다.

Ni계 촉매상에서 가솔린의 자열 개질반응에 (Autothermal Reforming)의한 수소제조 및 응용 (Hydrogen Production by Autothermal Reforming Reaction of Gasoline over Ni-based Catalysts and it Applications)

  • 문동주;류종우;유계상;이병권
    • 한국수소및신에너지학회논문집
    • /
    • 제15권4호
    • /
    • pp.274-282
    • /
    • 2004
  • This study focused on the development of high performance catalyst for autothermal reforming (ATR) of gasoline to produce hydrogen. The ATR was carried out over MgO/Al2O3 supported metal catalysts prepared under various experimental conditions. The catalysts before and after reaction were characterized by N2-physisorption, CO-chemisorption, SEM and XRD. The performance of supported multi-metal catalysts were better than that of supported mono-metal catalysts. Especially, it was observed that the conversion of iso-octane over prepared Ni/Fe/MgO/Al2O3 catalyst was 99.9 % comparable with commercial catalyst (ICI) and the selectivity of hydrogen over the prepared catalyst was 65% higher than ICI catalyst. Furthermore, it was identified that the sulfur tolerance of prepared catalyst was much better than ICI catalyst based on the ATR reaction of iso-octane containing sulfur of 100 ppm. Therefore, Ni/Fe/MgO/Al2O3 catalyst can be applied for a fuel reformer, hydrogen station and on-board reformer in furl cell powered vehicles.

자동차용 고분자 연료전지 수소 재순환 시스템의 이상 유동해석 (Two-Phase Flow Analysis of The Hydrogen Recirculation System for Automotive Pem Fuel Cell)

  • 곽현주;정진택;김재춘;김용찬;오형석
    • 대한기계학회논문집B
    • /
    • 제32권6호
    • /
    • pp.446-454
    • /
    • 2008
  • The purpose of this paper is to analyze two-phase flows of the hydrogen recirculation system. Two-phase flow modeling is one of the great challenges in the classical sciences. As with most problems in engineering, the interest in two-phase flow is due to its extreme importance in various industrial applications. In hydrogen recirculation systems of fuel cell, the changes in pressure and temperature affect the phase change of mixture. Therefore, two-phase flow analysis of the hydrogen recirculation system is very important. Two-phase computation fluid dynamics (CFD) calculations, using a commercial CFD package FLUENT 6.2, were employed to calculate the gas-liquid flow. A two-phase flow calculation was conducted to solve continuity, momentum, energy equation for each phase. Then, the mass transfer between water vapor and liquid water was calculated. Through an experiment to measure production of liquid water with change of pressure, the analysis model was verified. The predictions of rate of condensed liquid water with change of pressure were within an average error of about 5%. A comparison of experimental and computed data was found to be in good agreement. The variations of performance, properties, mass fraction and two-phase flow characteristic of mixture with resepct to the fuel cell power were investigated.

나프타 기반 수소 연료전지 자동차의 전과정 온실가스 발생량 분석 (Well-to-Wheel Greenhouse Gas Emissions Analysis of Hydrogen Fuel Cell Vehicle - Hydrogen Produced by Naphtha Cracking)

  • 김명수;유은지;송한호
    • 한국자동차공학회논문집
    • /
    • 제25권2호
    • /
    • pp.157-166
    • /
    • 2017
  • The Fuel Cell Electric Vehicle(FCEV) is recently evolving into a new trend in the automobile industry due to its relatively higher efficiency and zero greenhouse gas(GHG) emission in the tailpipe, as compared to that of the conventional internal combustion engine vehicles. However, it is important to analyze the whole process of the hydrogen's life cycle(from extraction of feedstock to vehicle operation) in order to evaluate the environmental impact of introducing FCEV upon recognizing that the hydrogen fuel, which is used in the fuel cell stack, is not directly available from nature, but instead, it should be produced from naturally available resources. Among the various hydrogen production methods, ${\sim}54.1%^{8)}$ of marketed hydrogen in Korea is produced from naphtha cracking process in the petrochemical industry. Therefore, in this study, we performed a well-to-wheels(WTW) analysis on the hydrogen fuel cycle for the FCEV application by using the GREET program from the US Argonne National Laboratory with Korean specific data. As a result, the well-to-tank and well-to-wheel GHG emissions of the FCEV are calculated as 45,638-51,472 g $CO_2eq/GJ$ and 65.0-73.4 g $CO_2eq/km$, respectively

NI계 촉매상에서 글리세롤의 수증기 개질반응(Steam Reforming)에 의한 수소제조 연구 (Studies on the Production of Hydrogen by the Steam Reforming of Glycerol Over NI Based Catalysts)

  • 허은;문동주
    • 한국수소및신에너지학회논문집
    • /
    • 제21권6호
    • /
    • pp.493-499
    • /
    • 2010
  • Steam reforming (SR) of glycerol, a main by-product of manufacturing process of bio-diesel, for the production of hydrogen was investigated over the Ni-based catalysts. The Ni-based catalysts were prepared by an impregnation method, and characterized by $N_2$ physisorption, CO chemisorption, XRD and TEM techniques. It was found that the Ni/${\gamma}-Al_2O_3$ catalyst showed higher conversion and catalytic stability for the carbon formation than the other catalysts in the steam reforming of glycerol under the tested conditions. The results suggest that the steam reforming of glycerol over modified Ni/${\gamma}-Al_2O_3$ catalyst minimized carbon formation can be applied in hydrogen station for fuel-cell powered vehicles and fuel processor for stationary and portable fuel cells.

제일원리전산을 이용한 연료전지용 나노 스케일 백금 합금촉매에 대한 열역학적 구조 분석 (A First Principles Study on Nano-scale Pt Alloy Structures for Fuel Cell Catalysts)

  • 노승효;한병찬
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.217-221
    • /
    • 2012
  • Over the last decade, performances of low temperature fuel cells are substantially improved by developing highly active Pt-M alloy catalysts. The electrochemical stability of those catalysts, however, still does not meet the commercial grade for fuel cells to be long-term power sources of electrical vehicles. To unveil a major mechanism causing such weak durability, we extensively utilize ab-initio computations on nano-scale Pt-Co alloy catalysts and analyze thermodynamically the most stable structure as a function of compositional variation. Our results indicate that there is a certain feature governing the particle distribution of a specific alloy element on the nano-scale catalysts, which aggravates the electrochemical degradation.

  • PDF

금속분리판을 이용한 무인기항공기(UAV)용 경량화 DMFC 스택 개발 (Development of Lightweight Direct Methanol Fuel Cell (DMFC) Stack Using Metallic Bipolar Plates for Unmanned Aerial Vehicles (UAVs))

  • 이수원;김도환;노정호;조영래;김도연;주현철
    • 한국수소및신에너지학회논문집
    • /
    • 제28권5호
    • /
    • pp.492-501
    • /
    • 2017
  • A 900 W scale direct methanol fuel cell (DMFC) stack is designed and fabricated for unmanned aerial vehicle (UAV) applications. To meet the volume and weight requirements, metallic bipolar plates are applied to the DMFC stack for the first time wherein POS470FC was chosen as bipolar plate material. To ensure good robustness of the metallic bipolar plate based DMFC stack, finite element method based simulations are conducted using a commercial ANSYS Fluent software. The stress buildup and deformation characteristics on bipolar plates and end plates are analyzed in details. The present DMFC stack exhibits the performance of 1,130 W at 32 V and 35.3 A, clearly demonstrating that it could successfully operate for UAVs requiring around 1,000 W of power.