• Title/Summary/Keyword: fuel cell vehicles

Search Result 249, Processing Time 0.026 seconds

Hydrogen Embrittlement Characteristics by Slow Strain Rate Test of Aluminum Alloy for Hydrogen Valve of Hydrogen Fuel Cell Vehicle (수소연료전지 자동차의 수소밸브용 알루미늄 합금의 저변형율인장실험에 의한 수소취화특성 연구)

  • Hyun-Kyu, Hwang;Dong-Ho, Shin;Seong-Jong, Kim
    • Corrosion Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.503-513
    • /
    • 2022
  • As part of eco-friendly policies, interest in hydrogen vehicles is growing in the automotive industry to reduce carbon emissions. In particular, it is necessary to investigate the application of aluminum alloy for light weight hydrogen valves among hydrogen supply systems to improve the fuel efficiency of hydrogen vehicles. In this research, we investigated mechanical characteristics of aluminum alloys after hydrogen embrittlement considering the operating environment of hydrogen valves. In this investigation, experiments were conducted with strain rate, applied voltage, and hydrogen embrittlement time as variables that could affect hydrogen embrittlement. As a result, a brittle behavior was depicted when the strain rate was increased. A strain rate of 0.05 mm/min was selected for hydrogen embrittlement research because it had the greatest effect on fracture time. In addition, when the applied voltage and hydrogen embrittlement time were 5 V and 96 hours, respectively, mechanical characteristics presented dramatic decreases due to hydrogen embrittlement.

An Experimental Study on Reductions of Idle Emissions with the Syngas Assist in an SI Engine (합성가스를 이용한 SI 엔진의 공회전 유해 배기가스 저감에 관한 실험적 연구)

  • Kim, Chang-Gi;Kang, Kern-Young;Song, Chun-Sub;Cho, Young-Seok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.174-182
    • /
    • 2007
  • Fuel reforming technology for the fuel cell vehicles could be applied to internal combustion engine for the reduction of engine out emissions. Since syngas which is reformed from fossil fuel has hydrogen as a major component, it has abilities to enhance the combustion characteristics with wide flammability and high speed flame propagation. In this study, syngas was added to a gasoline engine to improve combustion stability and exhaust emissions of idle state. Syngas fraction is varied to 0%, 50%, 100% with various ignition timing and excess air ratio. Combustion stability, exhaust emissions, fuel consumption and exhaust gas temperature were measured to investigate the effects of syngas addition on idle performance. Results showed that syngas has ability to widely extend lean operation limit and ignition retard range with dramatical reduction of engine out emissions.

State-of-the-Art of Low Cost Motor Drives (저가형 모터 드라이브 기술동향)

  • Lee B.K.;Kim J.S.;Rim G.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.451-454
    • /
    • 2003
  • In this paper, the research trend and the sate-of-the-art of low cost motor drives are introduced with the recently increasing interest In various industrial applications, such as home appliance, hybrid electric vehicles, wind power systems, fuel cell systems, and etc. Based on this presented work, it is highly expected the power electronics technologies, which are accumulated through the last 20 years, can be effectively applied to actual application fields.

  • PDF

가전용 직접메탄올 연료전지 현황 및 전망

  • 김혁년
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2003.05a
    • /
    • pp.211-232
    • /
    • 2003
  • 연료전지 개발 필요성; "One of the most important technologies for the early 21st century" - Bill Clinton, "Not only to encourage research and development, but to provide tax credits to enhance the marketplace of hybrid and fuel-cell vehicles" - Bush. 연료전지 장점 - 에너지 변환 고효율(70%), 무/저공해 발전, 높은 에너지 저장력 (고용량), 시장환경 - 석유 자원 유한, 환경오염에 따른 무공해 에너지원 필요, Portable Device의 장시간 사용 Needs.(중략)

  • PDF

An Experimental Study of Synthesis and Characterization of Vanadium Oxide Thin Films Coated on Metallic Bipolar Plates for Cold-Start Enhancement of Fuel Cell Vehicles (연료전지 차량의 냉시동성 개선을 위한 금속 분리판 표면의 바나듐 산화물 박막 제조 및 특성 분석에 관한 연구)

  • Jung, Hye-Mi;Noh, Jung-Hun;Im, Se-Joon;Lee, Jong-Hyun;Ahn, Byung-Ki;Um, Suk-Kee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.6
    • /
    • pp.585-592
    • /
    • 2011
  • The enhancement of the cold-start capability of polymer electrolyte fuel cells is of great importance in terms of the durability and reliability of fuel-cell vehicles. In this study, vanadium oxide films deposited onto the flat surface of metallic bipolar plates were synthesized to investigate the feasibility of their use as an efficient self-heating source to expedite the temperature rise during startup at subzero temperatures. Samples were prepared through the dip-coating technique using the hydrolytic sol-gel route, and the chemical compositions and microstructures of the films were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, and field-emission scanning electron microscopy. In addition, the electrical resistance hysteresis loop of the films was measured over a temperature range from -20 to $80^{\circ}C$ using a four-terminal technique. Experimentally, it was found that the thermal energy (Joule heating) resulting from self-heating of the films was sufficient to provide the substantial amount of energy required for thawing at subzero temperatures.

A Study on Improving Fatigue Life for Composite Cylinder with Seamless Integrated Liner (이음매 없는 일체형 라이너를 갖는 복합재 압력용기의 피로수명 향상에 대한 연구)

  • Kim, Hyo-Joon
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.6
    • /
    • pp.46-51
    • /
    • 2013
  • Composite cylinder is used by hydrogen fuel cell vehicles and natural gas vehicles because of high specific modulus, specific strength and fatigue resistance. composite cylinder has a seamless integrated liner and it is fully overwrapped with structural fibers of high strength carbon fibers in an epoxy matrix. In this study, filament winding pattern and autofrettage pressure design technique are presented considering structural weakness of knuckle and compressive residual stress. Presented methodology is verified by pressure cycling test of composite cylinders.

Coreless Hall Current Sensor for Automotive Inverters Decoupling Cross-coupled Field

  • Kim, Ho-Gi;Kang, Gu-Bae;Nam, Dong-Jin
    • Journal of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.68-73
    • /
    • 2009
  • Automotive inverters may require current sensors for motor torque control, especially, in applications of hybrid electric vehicles or fuel cell vehicles. In this paper, to achieve a compact, integrated and low cost current sensor, a hall current sensor without magnetic core is introduced for integrating an automotive inverter. The compactness of the current sensor is possible by using integrated magnetic concentrators based on the Hall effect. Magnetic fields caused by three-phase currents are analyzed and a magnetic shield design is proposed for decoupling the cross-coupled field. It offers galvanic isolation, wide bandwidth (>100kHz), and accuracy(< 1%). Using 2D FEM analysis, its performance is demonstrated with design parameters at a U-shaped magnetic shield. The proposed coreless current sensor is tested with rated current to validate the linearity and accuracy.

The Simulation of Hybrid Electric Vehicle - ADVISOR(Advanced Vehicle Simulator) (하이브리드 전기자동차 시뮬레이션 - ADVISOR)

  • Nam Jong-Ha;Choi Jin-Hong;Baek Jong-Yeop;Jang Dae-Kyoung;Hwang Ho-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.225-227
    • /
    • 2006
  • The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) first developed ADVISOR in 1994. Between 1998 and 2003 it was downloaded by more than 7,000 individuals, corporations, and universities world-wide. In early 2003 NREL initiated the commercialisation of ADVISOR through a public solicitation. AVL responded and was awarded the exclusive rights to license and distribute ADVISOR world-wide. AVL is committed to continuously enhance ADVISOR's capabilities. Provides rapid analysis of the performance and fuel economy of conventional and advanced, light and heavy-duty vehicle models as well as hybrid electric and fuel cell vehicle models. ADVISOR Simulates the Following Vehicle Characteristics. - Optimal drivetrain component sizes that provide the best fuel economy Vehicle's ablility to follow the speed trace - Amount of fuel and/or electric energy required by various vehicle concepts - Peak power and efficiency achieved by the drivetrain components - Torque and speed distribution of the engine - Average efficiency of the transmission - Gradeability of vehicles at various velocities

  • PDF

High Purity Hydrogen Generator for Fuel Cell Vehicles (연료전지 자동차 탑재형 고순도 수소생산장치)

  • Han, Jaesung;Lee, Seok-Min
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.12 no.4
    • /
    • pp.277-285
    • /
    • 2001
  • We developed a compact, 10 kWe, purifier-integrated reformer which supplies hydrogen for fuel cell vehicles. Our proprietary technologies regarding hydrogen purification by palladium alloy membrane and catalytic combustion by noble metal coated wire-mesh catalyst were combined with the conventional methanol steam reforming technology, resulting in higher conversion, excellent quality of product hydrogen, and better thermal efficiency than any other systems. In this system, steam reforming, hydrogen purification, and catalytic combustion take place all in a single reactor so that the whole system is compact and easy to operate. The module produces $8.2Nm^3/hr$ of 99.999% or higher purity hydrogen with CO impurity less than 10 ppm, which is equivalent to 10 kWe when PEMFC has 45 % efficiency. Thermal efficiency of the module is 81 % and the power density of the module is 1.6 L/kWe. As the results of experiments, cold-start time has been measured about 20 minutes. Response time of hydrogen production to the change of the feed rate has been within 1 minutes.

  • PDF

The Trend of Materials Technology in New Generation Vehicles (차세대 자동차 개발과 재료기술)

  • 임종대
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2002.04b
    • /
    • pp.7-7
    • /
    • 2002
  • Recently social demand to achieve low fuel consumption and clean emission requires the development of new generation vehicle beyond the conventional vehicle concept. In this point, new generation vehicle is newly designed as electric vehicle, hybrid electric vehicle, fuel cell electric vehicle or 3 liter car etc. In order to develop new generation vehicle, it is very important to develop new materials and process technologies now. In this paper these new technologies are presented focusing on weight reduction specially. Steel body can be achieved 20-25% weight reduction by adoption of high strength steel and new process technologies, i.e tailored blank and hydroforming. Aluminium body can be achieved 40-50% weigt down by use of all aluminium monocoque body or aluminium space frame with aluminium panel. Plasitic composite body can be achieved 30% weight reduction comparing with conventional steel body.

  • PDF