• Title/Summary/Keyword: fuel cell efficiency

Search Result 633, Processing Time 0.023 seconds

Parametric Study of SOFC System Efficiency Under Operation Conditions of Butane Reformer (부탄 개질기 운전조건에 따른 SOFC 시스템 효율에 대한 연구)

  • Kim, Sun-Young;Baek, Seung-Whan;Bae, Gyu-Jong;Bae, Joong-Myeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.4
    • /
    • pp.341-347
    • /
    • 2010
  • In this study, the efficiency of a solid-oxide fuel cell (SOFC) system with a steam reformer or prereformer was analyzed under various conditions. The main components of the system are the reformer, SOFC, and water boiling heat recovery system. Endothermic and exothermic reactions occur in the reformer and SOFC, respectively. Hence, the thermal management of the SOFC system greatly influences the SOFC system efficiency. First, the efficiencies of SOFC systems with a steam reformer and a prereformer are compared. The system with the prereformer was more efficient than the one with steam reformer due to less heat loss. Second, the system efficiencies under various prereformer operating conditions were analyzed. The system efficiency was a function of the heat requirement of the system. The efficiency increased with an increase in the operating temperature of the prereformer, and the maximum system efficiency was observed at $450^{\circ}C$ for a S/C of 2.0.

Water Repellent Coating of GDL with Different Concentration of Nano-sized PTFE Solution (나노사이즈 불화탄소수지 용액 농도에 따른 GDL 발수 코팅)

  • Jeong, Moon-Gook;Song, Ki-Se;Cho, Tae-Hwan;Choi, Weon-Kyung
    • Journal of Hydrogen and New Energy
    • /
    • v.20 no.4
    • /
    • pp.323-330
    • /
    • 2009
  • Efficiency of a fuel cell is determined by the generated water. If water is not removed sufficiently, water will be accumulated at GDL, which causes flooding. Therefore, water control is regarded as a crucial factor to sustain fuel ell performance. In this study, PTFE coating on the surface of carbon paper was carried out to establish optimum process for hydrophobic treatment of GDL. Carbon paper was immersed at different concentrations of nano-sized PTFE coating solution. Their characteristics were analyzed systematically by FE-SEM, water contact angle, cyclic voltamogam, XRD and FT-IR. The quantitative correlation between the amount of coated-PTFE on a carbon paper and concentration of coating solution was carefully investigated. It is suggested that the amount of PTFE-coating on a carbon paper can be managed by means of controling concentration of coating solution.

The Study of Hybrid system using FC and IPT for Railway system (철도용 연료전지 및 유도급전을 이용한 Hybrid system 연구)

  • Han, K.H.;Lee, B.S.;Park, H.J.;Kwon, S.Y.;Baek, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2008.10c
    • /
    • pp.218-220
    • /
    • 2008
  • Urban air quality, including carbon-dioxide emissions, and national energy security are related issues affecting the rail industry and transportation sector as a whole. They are related by the fact that (in the United States) 97-98% of the energy for the transport sector is based on oil, and more than 60% is imported. A fuelcell locomotive combines the environmental advantages of a catenary-electric locomotive with the higher overall energy efficiency and lower infrastructure costs of a diesel-electric. Catenaryelectric locomotives, when viewed as only one component of a distributed machine that includes an electricity-generating plant and transmission lines, are the least energy-efficient locomotive type. The natural fuel for a fuelcell is hydrogen, which can be produced from many renewable energies and nuclear energy, and thus a hydrogen-fuelcell locomotive will not depend on imported oil for its energy supply. This paper proposes a base models of Hybrid fuel cell/IPT railway vehicle power system, the necessary of this research.

  • PDF

Control Model of 1 kW Class Tactical Hybrid Power Generation System with Liquid Fuel Processor (야전용 액체 연료개질 1 kW급 하이브리드 전원시스템 제어 연구)

  • Ji, Hyun-Jin;Ha, Sang-Hyun;Kim, Young-Chul;Cho, Sung-Baek
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.732-739
    • /
    • 2011
  • A fuel cell/secondary battery hybrid power generation system could extend well beyond the efficiency and interoperability of the conventional diesel generator. The suggested power source system consists of 2.3 kW class PEMFC, 100 Ah lithium polymer battery, and two DC/DC converters by serial connection type. It was known that interoperability of sub-systems is the key factor for stable and optimal control of the hybrid power generation system. The modeling and simulation methods have been proposed to reduce the number of configurations and performance tests for components selection and select the optimized control condition of the power generation system. The control model for power source system is implemented based on the empirical formulation and carried out in the Matlab/Simulink environment. The results show that the simulation can be used to establish the algorism of prototype and increase the durability of the power source system.

A New Asymmetrical PWM Bidirectional Half Bridge Converter for Wide Input Voltage Range Applications (넓은 입력 전압 범위를 갖는 새로운 비대칭 PWM 방식의 양방향 하프브리지 컨버터)

  • Kim, Jeong-Geun;Choi, Se-Wan;Park, Rae-Kwan;Chang, Seo-Geon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.235-242
    • /
    • 2009
  • In this paper a new asymmetrical PWM bidirectional half bridge converter is proposed. The proposed converter has simple structure and wide duty cycle range, and therefore is suitable for applications such as fuel cells which have wide voltage variation. With the proposed asymmetrical PWM method the current rating of switch and transformer is significantly reduced compared to the conventional phase angle control method, and ZVZCS and synchronous rectification can also be achieved. This could result in high efficiency and high power density. The proposed converter is analytically compared to the conventional converter, and the proposed method was validated through the experiment.

Hydrogen Embrittlement Characteristics by Slow Strain Rate Test of Aluminum Alloy for Hydrogen Valve of Hydrogen Fuel Cell Vehicle (수소연료전지 자동차의 수소밸브용 알루미늄 합금의 저변형율인장실험에 의한 수소취화특성 연구)

  • Hyun-Kyu, Hwang;Dong-Ho, Shin;Seong-Jong, Kim
    • Corrosion Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.503-513
    • /
    • 2022
  • As part of eco-friendly policies, interest in hydrogen vehicles is growing in the automotive industry to reduce carbon emissions. In particular, it is necessary to investigate the application of aluminum alloy for light weight hydrogen valves among hydrogen supply systems to improve the fuel efficiency of hydrogen vehicles. In this research, we investigated mechanical characteristics of aluminum alloys after hydrogen embrittlement considering the operating environment of hydrogen valves. In this investigation, experiments were conducted with strain rate, applied voltage, and hydrogen embrittlement time as variables that could affect hydrogen embrittlement. As a result, a brittle behavior was depicted when the strain rate was increased. A strain rate of 0.05 mm/min was selected for hydrogen embrittlement research because it had the greatest effect on fracture time. In addition, when the applied voltage and hydrogen embrittlement time were 5 V and 96 hours, respectively, mechanical characteristics presented dramatic decreases due to hydrogen embrittlement.

Effects of Hard Anodizing and Plasma Ion-Nitriding on Al Alloy for Hydrogen Embrittlement Portection (알루미늄 합금의 수소취화 방지를 위한 경질양극산화 및 플라즈마이온질화의 영향)

  • Dong-Ho Shin;Seong-Jong Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.221-231
    • /
    • 2023
  • Interest in aluminum alloys for the hydrogen valves of fuel cell electric vehicles (FCEVs) is growing due to the reduction in fuel efficiency by the high weight. However, when an aluminum alloy is used, deterioration in mechanical characteristics caused by hydrogen embrittlement and wear is regarded as a problem. In this investigation, the aluminum alloy used to prevent hydrogen embrittlement was subjected to surface treatments by performing hard anodizing and plasma ion nitriding processes. The hard anodized Al alloy exhibited brittleness in which the mechanical characteristics rapidly deteriorated due to porosity and defects of surface, resulting in a decrease in the ultimate tensile strength and modulus of toughness by 15.58 and 42.51%, respectively, as the hydrogen charging time increased from 0 to 96 hours. In contrast, no distinct nitriding layer in the plasma ion-nitrided Al alloy was observed due to oxide film formation and processing conditions. However, compared to 0 and 96 hours of hydrogen charging time, the ultimate tensile strength and modulus of toughness decreased by 7.54 and 13.32%, respectively, presenting excellent resistance to hydrogen embrittlement.

A Numerical Modeling of the Temperature Dependence on Electrochemical Properties for Solid Oxide Electrolysis Cell(SOEC) (고체 산화물 수전해 시스템(SOEC)에서 전기화학적 특성의 온도 의존성에 대한 수치 모델링)

  • Han, Kyoung Ho;Jung, Jung Yul;Yoon, Do Young
    • Journal of Energy Engineering
    • /
    • v.29 no.2
    • /
    • pp.1-9
    • /
    • 2020
  • In recent days, fuel cell has received attention from the world as an alternative power source to hydrocarbon used in automobile engines. With the industrial advances of fuel cell, There have been a lot of researches actively conducted to find a way of generating hydrogen. Among many hydrogen production methods, Solid Oxide Electrolysis Cell(SOEC) is not only a basic way but also environment-friendly method to produce hydrogen gas. Solid Oxide Electrolysis Cell has lower electrical energy demands and high thermal efficiency since it is possible to operate under high temperature and high pressure conditions. For these reasons, experimental researches as well as studies on numerical modeling for Solid Oxide Electrolysis Cell have been under way. However, studies on numerical modeling are relatively less enough than experimental accomplishments and have limited performance prediction, which mostly is considered as a result from inadequate effects of electrochemical properties by temperature and pressure. In this study, various experimental studies of commercial Membrane Electrode Assembly (MEA) composed of Ni-YSZ (40wt%, Ni-60 wt% YSZ)/8-YSZ (TOSOH, TZ8Y)/LSM (La0.9Sr0.1MnO3) was utilized for improving effectiveness of SOEC model. After numerically analyzing effects of electrochemical properties according to operating temperature, causing the largest deviation between experiments and simulation are that Charge Transfer Coefficient (CTC), exchange current density, diffusion coefficient, electrical conductivity in SOEC. Analyzing temperature effect on parameter used in overpotential model is conducted for modeling of SOEC. cross-validation method is adopted for application of various MEA and evaluating feasibility of model. As a result, the study confirm that the numerical model of SOEC based on structured process of effectiveness evaluation makes performance prediction better.

Technical Tasks and Development Current Status of Organic Solar Cells (유기 태양전지의 개발 현황과 기술 과제)

  • Jang, Ji Geun;Park, Byung Min;Lim, Sungkyoo;Chang, Ho Jung
    • Korean Journal of Materials Research
    • /
    • v.24 no.8
    • /
    • pp.434-442
    • /
    • 2014
  • Serious environmental problems have been caused by the greenhouse effect due to carbon dioxide($CO_2$) or nitrogen oxides($NO_x$) generated by the use of fossil fuels, including oil and liquefied natural gas. Many countries, including our own, the United States, those of the European Union and other developed countries around the world; have shown growing interest in clean energy, and have been concentrating on the development of new energy-saving materials and devices. Typical non-fossil-fuel sources include solar cells, wind power, tidal power, nuclear power, and fuel cells. In particular, organic solar cells(OSCs) have relatively low power-conversion efficiency(PCE) in comparison with inorganic(silicon) based solar cells, compound semiconductor solar cells and the CIGS [$Cu(In_{1-x}Ga_x)Se_2$] thin film solar cells. Recently, organic cell efficiencies greater than 10 % have been obtained by means of the development of new organic semiconducting materials, which feature improvements in crystalline properties, as well as in the quantum-dot nano-structure of the active layers. In this paper, a brief overview of solar cells in general is presented. In particular, the current development status of the next-generation OSCs including their operation principle, device-manufacturing processes, and improvements in the PCE are described.

Numerical Study of Characteristic of Heat and Mass Transfer in Planar Membrane Humidifier According to Flow Direction (연료전지용 판형 막 가습기의 유동방향에 따른 열 및 물질전달 특성에 관한 해석적 연구)

  • Yun, Sungho;Byun, Jae Ki;Choi, Young Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.5
    • /
    • pp.503-511
    • /
    • 2013
  • The humidifying supply gas is important in terms of the performance efficiency and membrane life improvement of a PEM fuel cell. A planar membrane humidifier is classified as a cross-flow and counter-flow type depending on the flow direction, and heat and mass transfer occur between the plate and the membrane. In this study, the changes in heat and mass transfer for various inlet temperatures and flow rates are compared according to the flow direction by using the sensible and latent ${\varepsilon}$-NTU method. The obtained results indicate that the counter flow shows higher heat and mass transfer performance than the cross flow at a low flow rate, and the difference in performance decreases as the flow rate increases. Furthermore, changes in the mass transfer performance decrease considerably with a nonlinear increase in the inlet temperature, and variations of the heat transfer performance are small.