Browse > Article
http://dx.doi.org/10.3740/MRSK.2014.24.8.434

Technical Tasks and Development Current Status of Organic Solar Cells  

Jang, Ji Geun (Department of Electronics and Electrical Engineering, Dankook University)
Park, Byung Min (Department of Electronics and Electrical Engineering, Dankook University)
Lim, Sungkyoo (Department of Electronics and Electrical Engineering, Dankook University)
Chang, Ho Jung (Department of Electronics and Electrical Engineering, Dankook University)
Publication Information
Korean Journal of Materials Research / v.24, no.8, 2014 , pp. 434-442 More about this Journal
Abstract
Serious environmental problems have been caused by the greenhouse effect due to carbon dioxide($CO_2$) or nitrogen oxides($NO_x$) generated by the use of fossil fuels, including oil and liquefied natural gas. Many countries, including our own, the United States, those of the European Union and other developed countries around the world; have shown growing interest in clean energy, and have been concentrating on the development of new energy-saving materials and devices. Typical non-fossil-fuel sources include solar cells, wind power, tidal power, nuclear power, and fuel cells. In particular, organic solar cells(OSCs) have relatively low power-conversion efficiency(PCE) in comparison with inorganic(silicon) based solar cells, compound semiconductor solar cells and the CIGS [$Cu(In_{1-x}Ga_x)Se_2$] thin film solar cells. Recently, organic cell efficiencies greater than 10 % have been obtained by means of the development of new organic semiconducting materials, which feature improvements in crystalline properties, as well as in the quantum-dot nano-structure of the active layers. In this paper, a brief overview of solar cells in general is presented. In particular, the current development status of the next-generation OSCs including their operation principle, device-manufacturing processes, and improvements in the PCE are described.
Keywords
organic solar cells; operation principle; power conversion efficiency; manufacturing process; active layer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Mitsubishi Chemicals, MRS Fall meeting, Boston, USA, (2011).
2 Shinji Aramaki, Mitsubishi Chemical Group Science & Technology Research Center, MRS Fall meeting, Boston, USA (2012).
3 Y. I. Lee, J. H. Youn, M. S. Ryu, J. Kim, H. T. Moon and J. Jang, Org. Electron., 12(2), 353 (2011).   DOI   ScienceOn
4 V. Amendola, G. Mattei, C. Cusan, M. Prato and M. Meneghetti, Synth. Met., 155, 283 (2005).   DOI   ScienceOn
5 D. D. S. Fung, L. Qiao, W. C. H. Choy, C. Wang, W. E. I. Sha, F. Xie and S. He, J. Mater. Chem., 21, 16349 (2011).   DOI   ScienceOn
6 P. Li, X. Li, C. Sun, G. Wang, J. Li, T. Jiu and J. Fang, Sol. Energy Mater. Sol. Cells, 126, 36 (2014).   DOI   ScienceOn
7 K. Schmidt, C. J. Tassone, J. R. Niskala, A. T. Yiu, O. P. Lee, T. M. Weiss, C. Eang, J. M. Frechet, P. M. Beaujuge and M. F. Toney, Adv. Mater., 26(2), 300 (2014).   DOI   ScienceOn
8 F. Guillain, D. Tsikritzis, G. Skoulatakis, S. Kennou, G. Wantz and L. Vignau, Sol. Energy Mat. Sol. Cells, 122, 251 (2014).   DOI   ScienceOn
9 S. B. Kang, Y. J. Noh, S. I. Na and H. K. Kim, Sol. Energy Mater. Sol. Cells, 122, 152 (2014).   DOI   ScienceOn
10 D. Kaduwal, H. F. Schleiermacher, J. S. Gericke, T. Kroyer, B. Zimmermann and U. Wurfel, Sol. Energy Mat. Sol. Cells, 124, 92 (2014).   DOI   ScienceOn
11 S. Das, J. Joslin and T. L. Alford, Sol. Energy Mater. Sol. Cells, 124, 98 (2014).   DOI   ScienceOn
12 K. H. Kim, S. C. Gong and H. J. Chang, Thin Solid Films, 521, 69 (2012).   DOI   ScienceOn
13 G. Yu and A. J. Heeger, J. Appl. Phys., 78(7), 4510 (1995).   DOI   ScienceOn
14 J. W. Kang, Y. J. Kang, S. H. Jung, M. K. Song, D. G. Kim, C. S. Kim and S. H. Kim, Sol. Energy Mater. Sol. Cells, 103, 76 (2012).   DOI   ScienceOn
15 J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger and G. C. Bazan, Nature Mater., 6, 497 (2007).   DOI   ScienceOn
16 S. K. Jang, S. C. Gong and H. J. Chang, Synth. Met., 162, 426 (2012).   DOI   ScienceOn
17 H. K. Kim, Sol. Energy Mater. Sol. Cells 122, 152 (2014).   DOI   ScienceOn
18 S. H. Kim, B. M. Park, G. P. Kim, J. Yuh, Y. C. Chang and H. J. Chang, Synth. Met., 192, 101 (2014).   DOI   ScienceOn
19 J. Y. Kim, K. H. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante and A. J. Heeger, Science, 317(5835), 222 (2007).   DOI   ScienceOn
20 N. Blouin, A. Michaud, D. Gendron, S. Wakim, E. Blair, R. Neagu-Plesu, M. Belletete, G, Durocher, Y. Tao and M. Leclerc, J. Am. Chem. Soc., 130, 732 (2008).   DOI   ScienceOn
21 M. Lenes, G. J. A. H. Wetzelaer, F. B. Kooistra, S. C. Veenstra, J. C. Hummelen and P. W. M. Blom, Adv. Mater., 20, 2116 (2008).   DOI   ScienceOn
22 Y. He, H. Y. Chen, J. Hou and Y. Li, J. Am. Chem. Soc., 132, 1377 (2010).   DOI   ScienceOn
23 M. M. Wienk, J. M. Kroon, W. J. H. Verhees, J. Knol, J. C. Hummelen, P. A. van Hal and R. A. J. Janssen, Angew. Chem., Int. Ed., 42, 3371 (2003).   DOI   ScienceOn
24 W. Cai, X. Gong and Y. Cao, Sol. Energy Mater. Sol. Cells, 94, 114 (2010).   DOI   ScienceOn
25 X. Yang, A. Uddin, Renewable and Sustainable Energy Reviews, 30, 324 (2014).   DOI   ScienceOn
26 J. Jo, S. I. Na, S. S. Kim, T. W. Lee, Y. Chung, S. J. Kang, D. Vak and D. Y. Kim, Adv. Funct. Mater., 19(15), 2398 (2009).   DOI   ScienceOn