DOI QR코드

DOI QR Code

Effects of Hard Anodizing and Plasma Ion-Nitriding on Al Alloy for Hydrogen Embrittlement Portection

알루미늄 합금의 수소취화 방지를 위한 경질양극산화 및 플라즈마이온질화의 영향

  • Dong-Ho Shin (Graduate school, Mokpo national maritime university) ;
  • Seong-Jong Kim (Division of marine engineering, Mokpo national maritime university)
  • 신동호 (목포해양대학교 대학원) ;
  • 김성종 (목포해양대학교 기관시스템공학부)
  • Received : 2023.01.05
  • Accepted : 2023.01.14
  • Published : 2023.08.30

Abstract

Interest in aluminum alloys for the hydrogen valves of fuel cell electric vehicles (FCEVs) is growing due to the reduction in fuel efficiency by the high weight. However, when an aluminum alloy is used, deterioration in mechanical characteristics caused by hydrogen embrittlement and wear is regarded as a problem. In this investigation, the aluminum alloy used to prevent hydrogen embrittlement was subjected to surface treatments by performing hard anodizing and plasma ion nitriding processes. The hard anodized Al alloy exhibited brittleness in which the mechanical characteristics rapidly deteriorated due to porosity and defects of surface, resulting in a decrease in the ultimate tensile strength and modulus of toughness by 15.58 and 42.51%, respectively, as the hydrogen charging time increased from 0 to 96 hours. In contrast, no distinct nitriding layer in the plasma ion-nitrided Al alloy was observed due to oxide film formation and processing conditions. However, compared to 0 and 96 hours of hydrogen charging time, the ultimate tensile strength and modulus of toughness decreased by 7.54 and 13.32%, respectively, presenting excellent resistance to hydrogen embrittlement.

Keywords

References

  1. Y. Hung, K. M. El-Khatib, and H. Tawfik, Testing and evaluation of aluminum coated bipolar plates of pem fuel cells operating at 70 ℃, Journal of Power Sources, 163, 509 (2006). Doi: https://doi.org/10.1016/j.jpowsour.2006.09.013
  2. S. Y. Cha and J. B. Lee, Evaluation of Electrochemical Characteristics on Graphene Coated Austenitic and Martensitic Stainless Steels for Metallic Bipolar Plates in PEMFC Fabricated with Hydrazine Reduction Methods, Corrosion Science and Technology, 15, 92 (2016). Doi: https://doi.org/10.14773/cst.2016.15.2.92
  3. Y. Luo, Y. Wu, B. Li, T. Mo, Y. Li, S. P. Feng, J. Qu, and P. K. Chu, Development and application of fuel cells in the automobile industry, Journal of Energy Storage, 42, 103124 (2021). Doi: https://doi.org/10.1016/j.est.2021.103124
  4. Y. Choi and C. Jeong, Growth Behavior and Corrosion Damage of Oxide Film According to Anodizing Time of Aluminum 1050 Alloy, Corrosion Science and Technology, 21, 282 (2022). Doi: https://doi.org/10.14773/cst.2022.21.4.282
  5. J. Woodtli and R. Kieselbach, Damage due to hydrogen embrittlement and stress corrosion cracking, Engineering Failure Analysis, 7, 427 (2000). Doi: https://doi.org/10.1016/S1350-6307(99)00033-3
  6. S. G. Pantelakis, P. G. Daglaras, and C. A. Apostolopoulos, Tensile and energy density properties of 2024, 6013, 8090 and 2091 aircraft aluminum alloy after corrosion exposure, Theoretical and Applied Fracture Mechanics, 33, 117 (2000). Doi: https://doi.org/10.1016/S0167-8442(00)00007-0
  7. W. K. Jang, S. S. Kim, and K. S. Shin, Effect of cathodic hydrogen charging on mechanical properties of Al 8090, Scripta Materialia, 40, 503 (1999). Doi: https://doi.org/10.1016/S1359-6462(98)00472-2
  8. E. Serra, P. J. Kelly, D. K. Ross, and R. D. Arnell, Alumina sputtered on MANET as an effective deuterium permeation barrier, Journal of Nuclear Materials, 257, 194 (1998). Doi: https://doi.org/10.1016/S0022-3115(98)00473-5
  9. S. W. Cai, Y. Zong, T. S. Hua, and R. G. Song, Study on the inhibition of hydrogen embrittlement of 7050 aluminum alloy in humid air by MAO coating, Anti-Corrosion Methods and Materials, 67, 387 (2020). Doi: https://doi.org/10.1108/ACMM-12-2019-2237
  10. Y. Chen, S. Zhao, H. Ma, H. Wang, L. Hua, and S. Fu, Analysis of Hydrogen Embrittlement on Aluminum Alloys for Vehicle-Mounted Hydrogen Storage Tanks: A Review, Metals, 11, 1303 (2021). Doi: https://doi.org/10.3390/met11081303
  11. H. K. Hwang, D. H. Shin, S. J. Kim, Investigation on hydrogen embrittlement characteristics by slow strain rate test of aluminum alloy for hydrogen valve of hydrogen fuel cell vehicle, Corrosion Science and Technology, 21, 503 (2022). Doi: https://doi.org/10.14773/cst.2022.21.6.503
  12. Military Specification MIL-A-8625F, Anodic Coatings for Aluminum and Aluminum Alloys, Naval Air Warfare Center Aircraft Division Lakehurst, Lakehurs, NJ (1993).
  13. M. Remesova, S. Tkachenko, D. Kvarda, I. Rocnakova, B. Gollas, M. Menelaou, L. Celko, and J. Kaiser, Effects of anodizing conditions and the addition of Al2O3/PTFE particles on the microstructure and the mechanical properties of porous anodic coatings on the AA1050 aluminium alloy, Applied Surface Science, 513, 145780 (2020). Doi: https://doi.org/10.1016/j.apsusc.2020.145780
  14. J. Qin and M. Curioni, Transitions in porous oxide morphologies on AA2024-T3 anodized under high currents and low temperatures: Impact on corrosion behaviour, Electrochimica Acta, 428, 140927 (2022). Doi: https://doi.org/10.1016/j.electacta.2022.140927
  15. N. C. T. Martins, T. Moura e Silva, M. F. Montemor, J. C. S. Fernandes, and M. G. S. Ferreira, Electrodeposition and characterization of polypyrrole films on aluminium alloy 6061-T6, Electrochimica Acta, 53, 4754 (2008). Doi: https://doi.org/10.1016/j.electacta.2008.01.059
  16. J. Oh and C. V. Thompson, The role of electric field in pore formation during aluminum anodization, Electrochimica Acta, 56, 4044 (2011). Doi: https://doi.org/10.1016/j.electacta.2011.02.002
  17. S. H. Mohitfar, S. Mahdavi, M. Etminanfar, and J. Khalil-Allafi, Characteristics and tribological behavior of the hard anodized 6061-T6 Al alloy, Journal of Alloys and Compounds, 842, 1 (2020). Doi: https://doi.org/10.1016/j.jallcom.2020.155988
  18. I. C. Chung, C. K. Chung, and Y. K. Su, Effect of current density and concentration on microstructure and corrosion behavior of 6061 Al alloy in sulfuric acid, Surface and Coatings Technology, 313, 299 (2017). Doi: https://doi.org/10.1016/j.surfcoat.2017.01.114
  19. F. C. Garcia Rueda and J. T. Gonzalez, Electrochemical polymerization of polypyrrole coatings on hard-anodized coatings of the aluminum alloy 2024-T3, Electrochimica Acta, 347, 136272 (2020). Doi: https://doi.org/10.1016/j.electacta.2020.136272
  20. N. Tsyntsaru, B. Kavas, J. Sort, M. Urgen, and J. P. Celis, Mechanical and frictional behaviour of nano-porous anodized aluminium, Materials Chemistry and Physics, 148, 887 (2014). Doi: https://doi.org/10.1016/j.matchemphys.2014.08.066
  21. J. S. Zamarripa-Pina, H. M. Hdz-Garcia, J. C. Diaz-Guillen, J. A. Aguilar-Martinez, E. E. Granda-Gutierrez, and M. A. Gonzalez, Increase in hardness and chloride corrosion resistance of 6061 aluminum alloy by pulsed plasma nitriding, International Journal of Emerging Technology and Advanced Engineering, 3, 348 (2013). http://www.ijetae.com/files/Volume3Issue6/IJETAE_0613_59.pdf
  22. Y. K. Shim, Y. K. Kim, K. H. Lee, and S. Han, The properties of AlN prepared by plasma nitriding and plasma source ion implantation techniques, Surface and Coatings Technology, 131, 345 (2000). Doi: https://doi.org/10.1016/S0257-8972(00)00807-0
  23. K. Taherkhani and M. Soltanieh, Composite coatings created by new method of active screen plasma nitriding on aluminium alloy 6061, Journal of Alloys and Compounds, 741, 1247 (2018). Doi: https://doi.org/10.1016/j.jallcom.2017.12.360
  24. C. A. Figueroa and F. Alvarez, On the hydrogen etching mechanism in plasma nitriding of metals, Applied Surface Science, 253, 1806 (2006). Doi: https://doi.org/10.1016/j.apsusc.2006.03.015
  25. N. Renevier, T. Czerwiec, A. Billard, J. Von Stebut, and H. Michel, A way to decrease the nitriding temperature of aluminium: The low-pressure arc-assisted nitriding process, Surface and Coatings Technology, 116-119, 380 (1999). Doi: https://doi.org/10.1016/S0257-8972(99)00209-1
  26. P. Nageswara Rao, D. Singh, and R. Jayaganthan, Effect of annealing on microstructure and mechanical properties of Al 6061 alloy processed by cryorolling, Materials Science and Technology, 29, 76 (2013). Doi: https://doi.org/10.1179/1743284712Y.0000000041
  27. M. Okumiya, Y. Tsunekawa, and T. Murayama, Surface modification of aluminum using ion nitriding and fluidized bed, Surface and Coatings Technology, 142-144, 235 (2001). Doi: https://doi.org/10.1016/S0257-8972(01)01151-3
  28. E. I. Meletis and S. Yan, Formation of aluminum nitride by intensified plasma ion nitriding, Journal of Vacuum Science and Technology A, 9, 2279 (1991). Doi: https://doi.org/10.1116/1.577309
  29. R. A. Youngman and J. H. Harris, Luminescence studies of oxygen-related defects in aluminum nitride, Electronic structure of Ceramics, 73, 3238 (1990). Doi: https://doi.org/10.1111/j.1151-2916.1990.tb06444.x
  30. L. Rosenberger, R. Baird, E. McCullen, G. Auner, and G. Shreve, XPS analysis of aluminum nitride films deposited by plasma source molecular beam epitaxy, Surface and Interface Analysis, 40, 1254 (2008). Doi: https://doi.org/10.1002/sia.2874
  31. W. Y. Chang, T. H. Fang, Z. W. Chiu, Y. J. Hsiao, and L. W. Ji, Nanomechanical properties of array TiO2 nanotubes, Microporous and Mesoporous Materials, 145, 87 (2011). Doi: https://doi.org/10.1016/j.micromeso.2011.04.035
  32. T. Kikuchi, A. Takenaga, S. Natsui, and R. O. Suzuki, Advanced hard anodic alumina coatings via etidronic acid anodizing, Surface and Coatings Technology, 326, Part A, 72 (2017). Doi: https://doi.org/10.1016/j.surfcoat.2017.07.043
  33. M. Shahzad, M. Chaussumier, R. Chieragatti, C. Mabru, and F. Rezai-Aria, Influence of anodizing process on fatigue life of machined aluminium alloy, Procedia Engineering, 2, 1015 (2010). Doi: https://doi.org/10.1016/j.proeng.2010.03.110
  34. R. J. Anton and G. Subhash, Dynamic Vickers indentation of brittle materials, Wear, 239, 27 (2000). Doi: https://doi.org/10.1016/S0043-1648(99)00364-6
  35. Y. Yamada-Takamura, F. Koch, H. Maier, and H. Bolt, Hydrogen permeation barrier performance characterization of vapor deposited amorphous aluminum oxide films using coloration of tungsten oxide, Surface and Coatings Technology, 153, 114 (2002). Doi: https://doi.org/10.1016/S0257-8972(01)01697-8
  36. E. Serra, A. C. Bini, G. Cosoli, and L. Pilloni, Hydrogen permeation measurements on alumina, Journal of the American Ceramic Society, 88, 15 (2005). Doi: https://doi.org/10.1111/j.1551-2916.2004.00003.x
  37. W. Song, J. Du, Y. Xu, and B. Long, A study of hydrogen permeation in aluminum alloy treated by various oxidation processes, Journal of Nuclear Materials, 246, 139 (1997). Doi: https://doi.org/10.1016/S0022-3115(97)00146-3
  38. M. Asadipoor, A. Pourkamali Anaraki, J. Kadkhodapour, S. M. H. Sharifi, and A. Barnoush, Macro- and microscale investigations of hydrogen embrittlement in X70 pipeline steel by in-situ and ex-situ hydrogen charging tensile tests and in-situ electrochemical micro-cantilever bending test, Materials Science & Engineering A, 772, 138762 (2020). Doi: https://doi.org/10.1016/j.msea.2019.138762
  39. J. Wang, Q. Li, Q. Y. Xiang, and J. L. Cao, Performances of AlN coatings as hydrogen isotopes permeation barriers, Fusion Engineering and Design, 102, 94 (2016). Doi: https://doi.org/10.1016/j.fusengdes.2015.11.043
  40. A. Wasy, G. Balakrishnan, S. H. Lee, J. K. Kim, D. G. Kim, T. G. Kim and J. I. Song, Argon plasma treatment on metal substrates and effects on diamond-like carbon (DLC) coating properties, Crystal Research and Technology, 49, 55 (2014). Doi: https://doi.org/10.1002/crat.201300171
  41. H. S. Shin, J. Yeo, and U. B. Baek, Influence of specimen surface roughness on hydrogen embrittlement induced in austenitic steels during in-situ small punch testing in high-pressure hydrogen environments, Metals, 11, 1579 (2021). Doi: https://doi.org/10.3390/met11101579
  42. J. W. Kim, D. Hall, H. Yan, Y. Shi, S. Joseph, S. Fearn, R. J. Chater, D. Dye, C. C. Tasan, Roughening improves hydrogen embrittlement resistance of Ti-6Al-4V, Acta Materialia, 220, 117304 (2021). Doi: https://doi.org/10.1016/j.actamat.2021.117304
  43. Y. Fukumoto, New constructional steels and structural stability, Engineering Structures, 18, 786 (1996). Doi: https://doi.org/10.1016/0141-0296(96)00008-9
  44. J. Michalska, B. Chmiela, J. Labanowski, and W. Simka, Hydrogen damage in superaustenitic 904L stainless steels, Journal of Materials Engineering and Performance, 23, 2760 (2014). Doi: https://doi.org/10.1007/s11665-014-1044-2
  45. W. M. Mook, J. D. Nowak, C. R. Perrey, C. B. Carter, R. Mukherjee, S. L. Girshick, P. H. McMurry, and W. W. Gerberich, Compressive stress effects on nanoparticle modulus and fracture, Physical Review B, 75, 1 (2007). Doi: https://doi.org/10.1103/PhysRevB.75.214112
  46. W. W. Gerberich, J. Michler, W. M. Mook, R. Ghisleni, F. Ostlund, D. D. Stauffer, and R. Ballarini, Scale effects for strength, ductility, and toughness in "brittle" materials, Journal of Materials Research, 24, 898 (2009). Doi: https://doi.org/10.1557/jmr.2009.0143