• Title/Summary/Keyword: ft rate

Search Result 445, Processing Time 0.023 seconds

Preparation and In Vitro Test of Sold Dispersion using Acyclovir and Water Soluble Polymer (아시클로비어와 수용성 고분자를 이용한 고체분산체 제조 및 생체외 방출)

  • Ahn, Yong-San;Lee, Ha-Young;Hong, Keum-Duck;Jung, Sung-Beum;Cho, Sun-Hang;Rhee, John-Moon;Lee, Hai-Bang;Khang, Gil-Son
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.3
    • /
    • pp.169-176
    • /
    • 2004
  • Acyclovir(ACV) is an important antiviral drug used extensively against infections caused by herpes viruses, especially herpes simplex and varicella zoster. Because of high crystallinity and large particle size, solubility of intact ACV is very low in water(1.3 mg/ml). The goal of this work is to enhance the solubility of ACV. To make solid dispersion, Polyethyleneglycol, Hydroxyprophylmethylcelluose and Polyvinylpyrrolidone were used as polymer carriers in this work. Polymer carriers and drug were dissolved in acetic acid. And then spray drying method and freeze drying method were used as solvent extraction. Morphology, crystallization and functional group were characterized using SEM, XRD and FT-IR. The result of in vitro test showed the sample using PVP as polymer carrier had higher dissolution rate(up to 466%) than intact ACV.

Intercooler for Multi-stage Turbocharger Design and Analysis of the Hydrogen Reciprocating Engine for HALE UAV (고고도 장기체공 무인기용 수소 왕복 엔진의 다단터보차저용 인터쿨러 설계 및 해석)

  • Lee, Yang Ji;Rhee, Dong Ho;Kang, Young Seok;Lim, Byoeung Jun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.1
    • /
    • pp.65-73
    • /
    • 2017
  • Intercoolers for multi-stage turbocharger of the hydrogen reciprocating engine for HALE UAV are installed for reducing the charged air inlet temperature of the engine. The intercooler is air to air, cross flow, plate-fin type and the fin configuration is offset-strip fin which is referenced from the heat exchanger of the ERAST. Most of HALE UAV's cruising altitude is 60,000 ft and the density of air for this altitude is very low compared to sea level. Therefore the required heat transfer area for the HALE UAV is about three-times bigger than the sea level. Consequently, it is essential to design to meet the required efficiency of intercooler in the range of not excessively growing the weight of the heat exchanger. The quasi-one dimensional heat transfer design/analysis for satisfying the requirement of the engine are written in this paper. The numerical analyses for estimating the coolant flow rate of the engine bay and pressure loss in the header and core are also summarized.

Effect of Low Ethanol Concentrations on Growth and Survival of Vibrio parahaemolyticus (저농도의 Ethanol이 Vibrio parahaemolyticus의 증식과 생존에 미치는 영향)

  • 박찬성;카메론해커니
    • Korean journal of food and cookery science
    • /
    • v.11 no.2
    • /
    • pp.153-157
    • /
    • 1995
  • The effect of low concentrations of ethanol(3∼7%, v/v) in culture broth as an antibacteriaB agent against Vibrio parahaemolyticus was tested at -20, 5, 35, 45 and 5%. Increasing concentrations of ethanol progressively inhibited initial growth of t: parahaemelyticus at 35$^{\circ}C$. Growth occured at 5% ethanol, but only after a prolonged lag period. At 7% ethanol, the number of viable cells of V parahae-molyticus declined during incubation. Culture broth containiilg 3∼7% ethanol was inoculated with 106∼107'cells/uu of V Parahaemolyticus and incubated at low temperatures(5$^{\circ}C$, -20$^{\circ}C$) and high tem-peratures(45$^{\circ}C$, 50$^{\circ}C$). In the presence of 5 or 7ft of ethanol, the viability in the cells incubated at high temperatures decreased rapidly. Rate of death increased with increasing concentration of etha-nol.

  • PDF

Comparative Evaluation of Steam Gasification Reactivity of Indonesian Low Rank Coals (인도네시아 저등급 석탄의 스팀 가스화 반응성 비교 평가)

  • KIM, SOOHYUN;VICTOR, PAUL;YOO, JIHO;LEE, SIHYUN;RHIM, YOUNGJOON;LIM, JEONGHWAN;KIM, SANGDO;CHUN, DONGHYUK;CHOI, HOKYUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.6
    • /
    • pp.693-701
    • /
    • 2016
  • Steam gasification of low rank coals is possible at relatively low temperature and low pressure, and thus shows higher efficiency compared to high rank coals. In this study, the gasification reactivity of four different Indonesian low rank coals (Samhwa, Eco, Roto, Kideco-L) was evaluated in $T=700-800^{\circ}C$. The low rank coals containing $53.8{\pm}3.4$ wt% volatile matter in proximate analysis and $71.6{\pm}1.2$ wt% carbon in ultimate analysis showed comparable gasification reactivity. In addition, $K_2CO_3$ catalyst rapidly accelerated the reaction rate at $700^{\circ}C$, and all of the coals were converted over 90% within 1 hour. The XRD analysis showed no significant difference in carbonization between the coals, and the FT-IR spectrum showed similar functional groups except for differences due to moisture and minerals. TGA results in pyrolysis ($N_2$) and $CO_2$ gasification atmosphere showed very similar behavior up to $800^{\circ}C$ regardless of the coal species, which is consistent with the steam gasification results. This confirms that the indirect evaluation of the reactivity can be made by the above instrumental analyses.

Quantitative Analysis of Quality Control of Natural Medicine by $^1H-NMR$ Spectrometry-Quantitative Analysis of Hesperidin from Citrus unshiu ($^1H-NMR$을 이용한 한약재의 품질 평가 방법 확립;진피의 Hesperidin 정량분석)

  • Ahn, Eun-Mi;Baek, Mi-Young
    • The Korea Journal of Herbology
    • /
    • v.23 no.3
    • /
    • pp.27-32
    • /
    • 2008
  • Objectives : In this paper, we describe that $^1H-NMR$ spectroscopy may be superior to the conventional HPLC for the quantitative analysis of hesperidin from Citrus unshiu. Methods : $^1H-NMR$ spectra (400 MHz) were recorded in $DMSO-d_6$ using a Varian UNITY Inova AS 400 FT NMR spectrometer. One hundred milligram of powdered Citrus unshiu was weighed out and mixed with 1 ml of $DMSO-d_6$ with sonication for 30 min (room temperature). The extracts were filtrated through a 0.45 ${\mu}m$ PVDF filter and 0.5 ml of filtrated extract used for quantitative $^1H-NMR$ measurement (added 1 mg of dimethyl terephthalate as internal standard). The quantity of hesperidin was calculated by the ratio of the intensity of the compound to the known amount of internal standard. For HPLC analysis, the half gram of plant material was extracted with 60 ml of MeOH for 2 hours. The extracts were made 100 ml volume and analyzed by a Waters HPLC system using a YMC ODS column. The total flow rate was 1.0 ml/min with a sample volume 10 ${\mu}l$ and UV detection at 280nm. Results : The contents of hesperidin in Citrus unshiu was determined $5.33{\pm}0.06$% in the quantitative $^1H-NMR$ method and $5.15{\pm}0.12%$ in HPLC method. Using the quantitative $^1H-NMR$ the contents of hesperidin can be determined in much shorter time than the conventional HPLC measurements. Conclusions : From those results, the advantages of quantitative $^1H-NMR$ analysis are that can be analyzed to identify and quantify, and no reference compounds required for calibration curve. Besides, it allows rapid and simple quantification for hesperidin with an analysis time for only 10 min without any pre-purification steps.

  • PDF

Electrochemistry of Hemoglobin in the Chitosan and TiO2 Nanoparticles Composite Film Modified Carbon Ionic Liquid Electrode and Its Electrocatalysis

  • Sun, Wei;Li, Xiaoqing;Liu, Shufeng;Jiao, Kui
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.3
    • /
    • pp.582-588
    • /
    • 2009
  • Direct electron transfer of hemoglobin (Hb) in the chitosan (CTS) and $TiO_2$ nanoparticles (nano-$TiO_2$) composite films was achieved by using a room temperature ionic liquid of 1-butyl-3-methylimidazolium hexafluorophosphate ($BMIMPF_6$) modified carbon paste electrode (CILE) as the basal electrode. UV-Vis and FT-IR spectroscopy indicated that Hb in the film retained the native structure. Electrochemical investigation indicated that a pair of well-defined quasi-reversible redox peaks of Hb heme Fe(III)/Fe(II) was obtained with the formal potential located at -0.340 V (νs. SCE) in pH 7.0 phosphate buffer solution (PBS). The electrochemical parameters such as the electron transfer coefficient (α), the electron transfer number (n) and the standard electron transfer rate constant ($k_s$) were got as 0.422, 0.93 and 0.117 $s^{-1}$, respectively. The fabricated CTS/nano-$TiO_2$/Hb/CILE showed good electrocatalytic ability to the reduction of trichloroacetic acid (TCA) and hydrogen peroxide ($H_2O_2$), which exhibited a potential application in fabricating a new kind of third generation biosensor.

A Study on the molecular structure and molecular weight control of styrene films by plasma polymerization (플라즈마 중합법에 의한 스티렌 박막의 분자 구조 및 분자량 제어에 관한 연구)

  • 김종택;최충양;박종관;박응춘;이덕출
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.3
    • /
    • pp.213-219
    • /
    • 1997
  • The plasma polymerized styrene films were prepared by using an inter-electrode capacitively coupled gas-flow-type reactor, and the effects of plasma polymerization condition on the molecular weight distribution were investigated by Fourier Transform Infrared (FT-IR), Pyrolysis Gas Chromatography(PyGC), Differential Scanning Calorimetry(DSC) and Gel Permeation Chromatography(GPC). From the above results, the very cross-linked films different from chemical characteristics of the starting monomer were taken out, and it is realized that the molecular structure, cross linking density, and molecular weight distribution could be controlled by changing the parameters such as deposition pressure, deposition power and gas flow rate. Accordingly, it is suggested that plasma polymerization method performed by inter-electrode capacitively coupled gas-flow-type reactor has good characteristics for manufacturing the functional organic thin films which can be applied in sensors, opto-electric device, photo-resist by changing the polymerization parameters.

  • PDF

Characterization and Controlled Release of Solid Dispersed Sibutramine (시부트라민 고체 분산체의 특성화 및 조절된 방출거동)

  • Park, Jung-Soo;Ku, Jeong;Lee, Jun-Hee;Kim, Yun-Tae;Park, Jong-Hak;Ahn, Sik-Il;Mo, Jong-Hyun;Lee, Hai-Bang;Khang, Gil-Son
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.2
    • /
    • pp.119-126
    • /
    • 2008
  • Solid dispersions of poorly water-soluble drug, sibutramine, were prepared with hydrophilic polymer, poly-N-vinylpyrrolidone (PVP), hydroxypropylmethylcellulose (HPMC) and organic acid, citric acid, to improve the solubility of drug. Physicochemical variation and shape of microsphere were characterized by scanning electron microscopy (SEM), differential scanning calorimeter (DSC) and Fourier-transform infrared spectroscopy (FT-IR). Microspheres containing additives showed more spherical shape than non additive microspheres. In vitro release behavior of microspheres presented at simulated gastric fluid (pH 1.2) and simulated intestinal fluid (pH 6.8). The solid dispersion form transformed the drug into an amorphous state and dramatically improved its dissolution rate. These data suggest that the solid dispersion technique is an effective approach for developing the appetite depressant drug products and various pharmaceutical excipients are able to control the release behaviors.

Cutting Fluid Effluent Removal by Adsorption on Chitosan and SDS-Modified Chitosan

  • Piyamongkala, Kowit;Mekasut, Lursuang;Pongstabodee, Sangobtip
    • Macromolecular Research
    • /
    • v.16 no.6
    • /
    • pp.492-502
    • /
    • 2008
  • This study examined the adsorption of a synthetic cutting fluid and cutting fluid effluent on chitosan and SDS-modified chitosan, Chitosan and SDS-modified chitosan were prepared in form of beads and fibers. A series of batch experiments were carried out as a function of the initial concentration of cutting fluid, contact time and pH of the fluid. The contact angle study suggested that the SDS-modified chitosan was more hydrophobic than chitosan. The Zeta potential study showed that chitosan, SDS-modified chitosan and synthetic cutting fluid had a point of zero charge (PZC) at pH 7.8, 9 and 3.2, respectively. SDS-modified chitosan has a greater adsorption capacity than chitosan. The experimental results show that adsorption capacity of the cutting fluid on 1.0 g of SDS-modified chitosan at pH 3 and for a contact time of 120 min was approximately 2,500 g/kg. The adsorption capacity of chitosan and SDS-modified chitosan increased with decreasing pH. The Langmuir, Freundlich, and Brunauer Emmett and Teller (BET) adsorption models were used to explain the adsorption isotherm. The Langmuir isotherm fitted well with the experimental data of chitosan while the BET isotherm fitted well with the SDS-modified chitosan data. Pseudo first- and second-order kinetic models and intraparticle diffusion model were used to examine the kinetic data. The experimental data was fitted well to a pseudo second-order kinetic model. The significant uptake of cutting fluid on chitosan and SDS-modified chitosan were demonstrated by FT-IR spectroscopy, SEM and heat of combustion.

Pin-to-plate DBD system을 이용하여 HMDS/$O_2$ 유량 변화에 따라 증착된 $SiO_2$ 박막 특성 분석

  • ;Park, Jae-Beom;O, Jong-Sik;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.447-447
    • /
    • 2010
  • 일찍이 $SiO_2$ (Silicon dioxide) 박막은 다양한 분야에서 유전층, 부식 방지층, passivation층 등의 역할을 해왔다. 그리고 이러한 박막 공정은 대부분 진공의 환경에서 그 공정이 이루어지고 있다. 하지만 이러한 진공 system은 chamber, loadlock 그리고 펌프 등의 다양한 진공장비로 인한 생산 비용 증가, 공정의 복잡성뿐만 아니라 공정의 대면적화에 어려움을 지니고 있다. 그리고 최근 flexible display의 제조 공정에서 polymer 혹은 plastic 기판을 제조 공정에 적용시키기 위해 저온 공정이 필수적으로 요구 되고 있다. 이러한 기술적 한계를 뛰어 넘기 위해 최근 많은 연구가들은 atmospheric pressure plasma enhanced chemical vapor deposition (AP-PECVD)에 대해 지속적으로 다양한 연구를 하고 있다. 본 연구에서는 remote-type의 modified pin-to-plate dielectric barrier discharge (DBD) 시스템을 이용한 $SiO_2$ 무기 박막 증착에 관해 연구하였다. $O_2$/He/Ar의 gas와 5 kV AC power (30 kHz)의 전원장치를 통해 고밀도 대기압 플라즈마를 발생시켰고, silicon precursor로는 hexamethyldisilazane (HMSD)를 사용하였다. 먼저 HMDS와 $O_2$ gas의 flow rate 변화에 따른 증착률을 조사하였고 그 다음으로 박막의 조성 및 표면 특성을 조사하였다. HMDS의 유량이 100 ~ 300 sccm으로 증가함에 따라 증착속도는 증가했다. 하지만 FT-IR을 통해 HMDS의 유량이 증가하면 반응에 참여할 산소 분자의 부족으로 인해 $-(CH_3)_X$의 peak intensity가 증가하고, -OH의 peak intensity가 점차 감소함을 관찰 할 수 있었다. 또한 증착된 박막의 표면에 particle과 불균일한 surface morphology 등을 SEM image를 통해 관찰 하였다. 산소 유량이 탄소와 관련된 많은 불순물들의 제거에 도움이 됨에도 불구하고 14 slm 이상의 산소가 반응기 내로 주입되게 되면 대기압 플라즈마의 discharge가 불안정하게 되어 공정효율을 저하시키는 요소가 되었다. 결과적으로 HMDS (150 sccm)/$O_2$ (14 slm)/He (5 slm)/Ar (3 slm)의 조건에서 약 42.7 nm/min 증착률을 가지며, 불순물이 적고 surface morphology가 깨끗한 $SiO_2$ 박막을 증착할 수 있었다.

  • PDF