• Title/Summary/Keyword: frontal & side impact

Search Result 28, Processing Time 0.021 seconds

Bending Behaviors of Stainless Steel Tube Filled with Al5Si4Cu4Mg Closed Cell Aluminum Alloy Foam (발포 Al5Si4Cu4Mg 알루미늄 합금이 충진된 304 스테인리스강 원통의 굽힘저항 특성)

  • Kim, Am-Kee;Lee, Hyo-Jin;Cho, Seong-Seock
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.10
    • /
    • pp.1686-1694
    • /
    • 2003
  • The foam-filled tube beams can be used for the front rail and firewall structures to absorb impact energy during frontal or side collision of vehicles. In the case of side collision where bending is involved in the crushing mechanism, the foam filler would be effective in maintaining progressive crushing of the thin-walled structures so that much impact energy could be absorbed. In this study, bending behaviors of the closed-cell-aluminum-alloy-foam-filled stainless steel tube were investigated. The various foam-filled specimens including piecewise fillers were prepared and tested. The aluminum-alloy-foam filling offered the significant increase of bending resistance. Their suppression of the inward fold formation at the compression flange as well as the multiple propagating folds led to the increase of load carrying capacity of specimens. Moreover, the piecewise foams would provide the easier way to fill the thin-walled shell structures without the drawback of strength.

A Study on Characteristics of Damageability and Repairability with Similar Platform Type at Low Speed 40% Offset Crash Test (동일 플렛폼 차량에 대한 저속 충돌시 손상성 수리성에 미치는 영향에 관한 연구)

  • Lim, Jong-Hun;Park, In-Song;Heo, Seung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.108-113
    • /
    • 2005
  • The damageability and repairability of similar platform type vehicles could be very concerned with design optimization. In all the vehicles crash tested, small size passenger vehicles were weakness in aspect of damageability and repairability. The most critical area appears to be repair cost considering that parts cost is the largest portion of total repair cost segments. Besides repair cost, attaching method of front sidemember and subframe are placed special importance for impact energy absorption and damageability and repairability. So in order to improve damageability and repairability of vehicle structure and body component of the monocoque type passenger vehicles, the end of front side member and front back beam should be designed with optimum level and to supply the end of front side member as a partial condition approx 300mm. The effectiveness of design concept on the 40% offset frontal impact characteristics of the passenger vehicle structure is investigated and summarized.

Simulation Analysis on the Impact of Racing Car with Space Frame (스페이스 프레임을 가진 경주용 차량의 충돌에 관한 시뮬레이션 해석)

  • Cho, Jae-Ung;Bang, Seung-Ok;Kim, Key-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.7
    • /
    • pp.2341-2348
    • /
    • 2010
  • In this paper, strain and stress on space frame are analyzed at racing car under crash loads. As the deformation is reduced to a minimum during crash and the vulnerable parts are grasped, the safety of driver is ensured. The vehicle frame is modelled with truss structure by inputting the material property of carbon steel on finite element analysis. The increase of impulse momentum is due to speed change at frontal collision. This influence effected on vehicle frame is also analyzed by ANSYS program. The deformation of the frame is studied by applying the crash loads at front, side and rear directions. Though the influence on the seat of driver is small at frontal and rear crash, the deformation due to impact is progressed into this seat. The safety of frame is enhanced by making up for these weak deformations and these results of simulation analysis can be applied to the production of the actual vehicle frame.

Impact of Environmental Variables on the Diversity and Distribution of the Megabenthos in the South Sea of Korea

  • Kang, Su Min;Yu, Ok Hwan;Lee, Hyung Gon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.3
    • /
    • pp.354-365
    • /
    • 2019
  • Megabenthos samples were collected using 10-min trawls towed at 17 stations from 2015 to 2016. The dominant species (>1% of the total density) were Stegophiura sterea (10.4%) and two subtropical species, Mactrinula dolabrata (9.0%) and Acila divaricate (8.3%), respectively. The community structure of the megabenthos fell into four groups: the southeast, the southernmost region off Jeju Island, the frontal zone of the South Sea with C3, and a diagonal area from the south coast to the western side of Jeju Island. The total numbers of species, diversity, density and biomass were higher in the C3 region of the South Sea. Environmental factor analysis showed that differences in the megabenthos community were related to depth, gravel contents, and sorting value (${\sigma}$). These results indicate that changes in the marine environmental conditions in the South Sea of Korea affect the megabenthos species' composition and diversity.

Development for Shock Absorption System by Using FE Analysis (FE 해석을 통한 충격흡수시설의 개발)

  • Kang, Y.H.;Kim, H.J.;Park, D.H.;Kim, K.S.;Kang, B.S.
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.224-229
    • /
    • 2000
  • This paper describe a (mite element computer simulation of a absorption system using full scale car crash test. The full scale test selected for this study is a 80kmh frontal, side and 25% offset impact of a 1993 Ford Taurus vehicle into a absorption system. This absorption system has external rubber and internal steel pannel. This simulation has completed for decision of these components energy absorption performance. Dynamical performance of this system and movement are obtained from this simulation. and then We can appreciate the safety of passenger from measure the vehicle C.G's acceleration.

  • PDF

A study on the impact load acting on an FPSO bow by steep waves

  • Hong, Sam-Kwon;Lew, Jae-Moon;Jung, Dong-Woo;Kim, Hee-Taek;Lee, Dong-Yeon;Seo, Jong-Soo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • Various offshore structures such as FPSO, FSO, Semi-submersible, TLP and Spar are operated to develop offshore oil and gas fields. Most of the offshore structures shall be operated over 20 years under the harsh environments at sites so that the offshore structures should be designed to endure the harsh environments. In this study, the effect of the impact load (so called slapping load) by the steep waves acting on the FPSO bow is investigated through the model test. For measurement of the impact pressures on the frontal area, a bow-shaped panel was fabricated, and installed the pressure sensors on the bow starboard side of the model FPSO. During the model test campaign, the impact load was investigated using the steep waves with $Hs/{\lambda}$ greater than 1/16 of the representative wave condition. Consequently, it is confirmed through the model test that the impact loads acting on the FPSO bow are significantly increased with the steep waves ($Hs/{\lambda}$ > 1/16) than the representative wave conditions of a maximum significant wave height and a pitch forcing period. Therefore, for safe design of North Sea FPSO, it is necessary to consider the steep waves in addition to the representative wave conditions and to be applied as proper structural load. Also, the effect of random seeds in irregular waves should be considered to build the safe FPSO.

Development of a Preprocessor Program for Articulated Total Body (ATB의 전처리 프로그램 개발)

  • Lee, Dong-Jae;Son, Kwon;Choi, Kyung-Hyun;Jeon, Kyu-Nam
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.214-222
    • /
    • 2002
  • Computer simulations are widely used to analyze passenger safety in simulated traffic accidents. ATB, Articulated Total Body, is a computer simulation model developed to predict gross human body response to such dynamic environments as vehicle crashes and pilot ejections. ATB, whose code is open, has high flexibility and application capability that users can easily insert defined modules and functions. ATB is, however, inconvenient as it was coded in FORTRAN and it needs a formated input file. Moreover, it takes much time to make input files and to modify coding errors. This study aims to increase user friendliness by adding a preprocessor program, WINATB(WINdows ATB), to the conventional ATB. WINATB, programmed in Visual C++ and OpenGL, uses ATB IV as a dynamic solver. The preprocessor helps users prepare input files through graphic interface and dialog box. An additional postprocessor makes the graphical presentation of simulated results. In these case of the frontal crash, the rear impact and the side impact, the simulation results obtained by WINATB and MADYMO(MAthematical Dynamic Model) are compared to validate the effectiveness of WINAIB.

Injury Study for Q6 and Q10 Child Dummies (Q6, Q10 어린이 인체모형의 상해치 연구)

  • Sun, Hongyul;Lee, Seul;Seok, Juyup;Yoo, Wonjae;Yoon, Ilsung
    • Journal of Auto-vehicle Safety Association
    • /
    • v.8 no.1
    • /
    • pp.31-37
    • /
    • 2016
  • The Child Occupant Safety Assessment was first introduced and carried out by Euro NCAP in 2003, with the goal of ensuring manufacturers to develop safe vehicles for passengers of all ages; the objective was to evaluate the safety and protection offered by different Child Restraint Systems (CRS) in the event of a crash. In 2013, the formerly used P child dummy series was replaced by newer and more biofidelic Q1.5 and Q3 child dummies, representing 1.5 and 3 year old children respectively. The frontal and side impact dynamic performances of the Q1.5 and Q3 were tested within all classes of vehicles assessed by Euro NCAP at the time. As an extension to that initiative, Q6 and Q10 child dummies were later developed representing children of 6 and 10 years old. Since the protection of larger children during vehicle crashes relies greatly on the interaction of vehicle restraint systems such as seat belt and the CRS, instrumented Q6 and Q10 dummies will be used to assess the protection offered in the event of front and side impact crashes. In this paper, we focused on injury criteria of Q6 and Q10 child dummies at 64 kph 40% offset frontal crash test. The whole procedure was designed with DFSS analysis. The full vehicle sled test results of both dummies were conducted with different restraint systems settled through previous sled test. It showed that several injury criteria and image data were collected as the result of the full vehicle sled test. Based on the results of these investigations, this paper describes which factor is most important and combination shows the best performance when evaluating rear seat occupant protection for Q6 and Q10 child dummies.