Research Paper

https://doi.org/10.7837/kosomes.2019.25.3.354

Impact of Environmental Variables on the Diversity and Distribution of the Megabenthos in the South Sea of Korea

Su Min Kang***** · Ok Hwan Yu****** · Hyung Gon Lee***

*, ** Department of Convergence Study on the Ocean Science and Technology Ocean Science and Technology School,

Korea Maritime and Ocean University, Busan 49112, Korea

*** Marine Ecosystem and Biological Research Center, Korea Institute of Ocean Science & Technology, Busan 49111, Korea

Abstract : Megabenthos samples were collected using 10-min trawls towed at 17 stations from 2015 to 2016. The dominant species (>1% of the total density) were Stegophiura sterea (10.4%) and two subtropical species, Mactrinula dolabrata (9.0%) and Acila divaricate (8.3%), respectively. The community structure of the megabenthos fell into four groups: the southeast, the southernmost region off Jeju Island, the frontal zone of the South Sea with C3, and a diagonal area from the south coast to the western side of Jeju Island. The total numbers of species, diversity, density and biomass were higher in the C3 region of the South Sea. Environmental factor analysis showed that differences in the megabenthos community were related to depth, gravel contents, and sorting value (σ). These results indicate that changes in the marine environmental conditions in the South Sea of Korea affect the megabenthos species' composition and diversity.

Key Words : South Sea, Frontal zone of South Sea, Megabenthos, Benthic community, Environmental variable

1. Introduction

Benthic animals live on the bottom of the ocean, including soft areas, such as places of mud and sandy sediment, and hard areas. Depending on their size, benthic animals are divided into megabenthos, macrobenthos, meiobenthos, and microbenthos. They play a decisive role in marine ecology as secondary producers and have an important role in the recycling of nutrients because they resuspend nutrient-rich bottom sediments into the water mass (Daan, 1973; Snelgrove, 1998; Volkenborn et al., 2007; Pratt et al., 2014; Sibaja-Cordero et al., 2016). In addition, macrobenthic animals can be an important means of understanding ecosystem changes and environmental characteristics because of their slow mobility and long lifecycle (Sanders, 1968; Pearson and Rosenberg, 1978; Reisss and Kröncke, 2005; Burd et al., 2008). Macrobenthos communities appear diversely according to sediment characteristics within a sediment type and adaptations of organisms in response to various environmental changes (Gray, 1981; Rakocinski et al., 1997; Paik et al., 2007; Choi, 2016). For example, species composition varies depending on the grain size and sorting values of sedimentary facies, among other environmental factors (Weston, 1988; Amri et al., 2014). Megabenthos are larger than 1 cm in size and include starfish, sea cucumbers, crabs, and shrimp, and have value as a resource for fisheries. Megabenthos have greater mobility than macrobenthos, and can respond to the habitat and environment. Therefore, the community structure and distribution patterns may vary greatly. Most studies have focused on the epibenthic megafauna in the deep-sea. Several studies reported that the density and distribution of megabenthos are related to depth (Jones et al., 2007; Linse et al., 2013), and the distribution of the megabenthic fauna community is related to topography, substratum, sediment conditions, and food resources (Jones et al., 2007; Ramirez-Llodra et al., 2010; Yu et al., 2014).

Consequently, the study of the megabenthos community structure according to the environmental variables of a surveyed area can facilitate understanding of their biodiversity and distribution.

The South Sea of Korea is affected by three currents: the high-temperature, high-salinity Jeju Warm Current; the low-salinity Yangtze River discharge flow from China; and the cold-water bottom currents of the Yellow Sea. Changes in the environment such as debris and low salinity from the Yangtze River have great impact on the pelagic ecosystem in the East China Sea and the South Sea of Korea (MOF, 2006; Kim et al., 2006; Liu et al., 2019). Seasonal flow differences from various water flows drive

^{*} First Author : kind616@kiost.ac.kr, 051-664-3334

^{*} Corresponding Author : ohyu@kiost.ac.kr, 051-664-3291

environmental variability in these regions. As a result, the study area has high biodiversity (Hur et al., 1999; Jang et al., 2011). The East China Sea, Jeju Island, Ieodo coast and South Sea of Korea is a haven for fisheries given a variety of fishery resources along with the diversity of marine environment (MLTL, 2011; MLTL, 2012; Yoon, 2013). In particular, the East China Sea is an important area for understanding the impacts of the subtropical ecosystem on global warming (Yu et al., 2008; MLTL, 2010). However, there are very few studies on the benthic ecosystem (Aller and Aller, 1986; Yu et al., 2008).

Under the influence of the subtropical current, the South Sea is expected include appearances of tropical - subtropical to megafaunal species. However, the study of the benthos inhabiting this study area, where various environmental changes occur, is very limited. Previous studies have been conducted only on the species composition of the macrobenthos and macrobenthic community in the East China Sea and the Korea Strait affected by pelagic organisms (Yu et al., 2008). A study on only the distribution of macrobenthos according to the benthic environment of the East China Sea has been performed (Rhoads et al., 1985). However, information on the diversity and species composition of megabenthos in the South Sea has still not been collated. Therefore, this study aims to analyze the species diversity and distribution of megabenthos in the South Sea and Jeju Island region.

2. Materials and methods

In June and November 2015 and April 2016, sampling was conducted at 17 stations in the South Sea and Jeju Island, Ieodo coast of Korea, to identify the impact of environmental variables on the diversity and distribution of the megabenthos in the South Sea of Korea (Fig. 1, Table 1). The April 2016 survey was conducted around the frontal zone of the South Sea. Megabenthos (>1 cm) samples were collected using 10-min trawls (width: 1.0 m) at each station. The samples were immediately refrigerated on the research vessel. After transporting them to the laboratory, the megabenthos samples were sorted under a stereomicroscope (Leica MZ16A), counted, identified to the lowest possible taxonomic level, and then fixed in 70 % ethanol. The samples were recalculated to 100 m^2 , and the number of species, density, and amount of biomass were determined.

Fig. 1. Sampling sites in southern sea and Jeju Island · Ieodo coast of Korea.

To analyze the environmental factors at each sampling site, the temperature, salinity, and dissolved oxygen (DO) were measured with a CTD during sampling periods, and surface sediment samples (one time per site) were collected in a 50 mL conical tube for analysis of the sediment grain size. The sediment samples were classified into coarse-grained sediment and fine-grained sediment after the removal of organic matter and CaCO3. The sediment samples were dried for 48 hours at 50 $^\circ C$ before applying 10% hydrogen peroxide on 1 g of samples to get rid of carbon with 0.1 N of hydrochloric acid, and heated to >100°C to evaporate the hydrogen peroxide, and then washed > 3 times with distilled water to remove organic matter and salts. The sediment grain size composition was determined using a dry sieving method with a Ro-Tap sieve shaker (<4 phi; W.S. Tyler) along with a laser diffraction method. The mean grain size was calculated according to Folk and Ward (1957).

The megabenthos samples were photographed with a Nikon D5500 camera, and multifocal images were made using a Helicon remote with the Helicon Focus 6 program (Helicon Soft Ltd.) to compensate for the shortcomings of the existing two-dimensional images.

The species diversity index (H') (Shannon and Wiener 1963) was calculated based on the density. Cluster analysis was carried out using the Bray - Curtis similarity measure (Somerfield, 2008) based on the fourth root-transformed density data and group average linkage. Multidimensional scaling analysis was also performed. The similarity percentage (SIMPER) analysis was

Station No.	Longitudo (dograo)	Latituda (dagraa)	Donth(m)		Sampling times	
		Latitude (degree) Depui(iii) —		Jun 2015	Nov 2015	Apr 2016
A3	128.50	34.42	68	1		
A8	128.50	34.00	104	1	1	
B0	127.50	34.30	24			1
B2	127.50	34.17	38			1
B4	127.50	34.00	75	1	1	1
B6	127.50	33.83	88			1
B 8	127.50	33.67	94			1
B10	127.50	33.51	90	1	1	
C3	126.50	34.00	48	1	1	
E1	124.00	33.50	66	1	1	
E5	125.00	33.50	78	1		
F1	124.00	33.00	48	1	1	
F6	125.00	33.00	80	1		
F11	126.00	33.00	109	1	1	
F15	127.00	33.00	103	1	1	
H1	124.50	32.00	37	1	1	
H12	126.75	32.00	109	1	1	

Table 1. Sampling site and information in the study area

conducted to quantify the contribution of each species to the similarity/dissimilarity of those groups. The BIO-ENV test was performed to determine the environmental factors influencing the megabenthos community structure with 95% or higher correlations when analyzing. Spearman rank correlation analysis was conducted to determine the correlations between environmental variables and the benthic community. This analysis was performed in PRIMER v.6 (Plymouth Routines in Multivariate Ecological Research-e) (Clarke and Warwick, 2001).

3. Results

3.1 Environmental analysis

The study area had an average depth of 74 m, depth range of 24 to 109 m, and maximal depths deeper than 100 m in the southern area of Jeju Island and A8 (Table 1). In June 2015, the average bottom temperature was 13.8° C (range: $10.5 - 14.8^{\circ}$ C). In November 2015 and April 2016, the mean bottom temperatures were 16.9°C (range: $12.0 - 22.1^{\circ}$ C) and 14.5° C (range: $13.8 - 15.4^{\circ}$ C), respectively (Fig. 2). The temperatures of E1 and E5 northwest of Jeju Island were 10.4° C and 11.4° C, respectively, lower than the average temperature in June 2015. The temperatures of F1 and H1 southwest of Jeju Island were 20.8° C and 22.1° C, respectively, about 4°C higher than the average and 10°C higher than E1 in November. The mean salinity of the bottom water was 33.7 psu (range: 32.0 - 34.5 psu) in June 2015, 33.8 psu (range: 32.3 - 34.6 psu) in November 2015, and 34.2 psu (range: $33.8 - 10.5^{\circ}$

34.6 psu) in April 2016. There were no significant differences in salinity, but the frontal zone of the South Sea had higher salinity than the other stations. Bottom DO was in the range of 5.1 - 7.5 mg/L in June 2015, 4.0 - 6.8 mg/L in November 2015, and 6.4 - 8.8 mg/L in April 2016. Sediment grain size averaged 4.6 σ and varied within 2.3 - 8.1 σ among the stations. B0, B2, and B4 in the South Sea had very fine-grained sediment that was mainly muddy.

Fig. 2. Environmental variables at each station.

3.2 Species composition

In total, 307 species were identified during the survey period. Arthropod crustaceans represented the most abundant taxon with 118 species (38%), followed by others phyla with 71 species (23%), mollusks with 55 species (18%), echinoderms with 44 species (14%), and annelid polychaetes with 19 species (6%). An average of 29 species were recorded. The highest number of species (116) was found at C3, and the lowest number (5) was identified at H12, south of Jeju Island (Fig. 3).

The mean density of megabenthos was 28.7 ind/100 m² with values of 25.1 ind/100 m² in June 2015, 33.0 ind/100 m² in November 2015, and 29.5 ind/100 m² in April 2016. In June 2015, the density was highest at C3 (89 ind/100 m²), in the South Sea, and the values were less than 5 ind/100 m² at F11, H1, and H12, southwest of Jeju Island. In November 2015, the density was highest at E1 (93.6 ind/100 m²), west of Jeju Island, and density was lowest (<5 ind/100 m²) at F5 and H12, south of Jeju Island. In April 2016, the density was highest at B2 (100 ind/100 m²), located at the frontal zone of the South Sea. During the survey period, the density ranking by taxonomic group was mollusks (31%), arthropod crustaceans (25%), echinoderms (22%), other phyla (19%), and annelid polychaetes (4%).

Fig. 3. Number of species, diversity (H'), density (ind./100 m²) and biomass $(g/100 \text{ m}^2)$ of megabenthos in the study area.

During the survey period, the mean biomass of megabenthos was 181.1 g/100 m² (range: 2.2 - 1422.2 g/100 m²). There were significant differences among stations. The mean biomass values in June 2015, November 2015, and April 2016 were 135.4 g/100 m², 224.3 g/100 m², and 213.4 g/100 m², respectively. In June 2015, the biomass was significantly higher at C3 (924.6 g/100 m²) and lower

at F11, H1, and H12 (<5 g/100 m²), off the southwest coast of Jeju Island. In November 2015, the biomass was significantly higher at C3 (1422.2 g/100 m²) and lower at F15 (< 10 g/100 m²), south of Jeju Island. In April 2016, the biomass was highest at B2 (704 g/100 m²) and lowest at B0. During the survey period, the biomass ranking of megabenthos by taxonomic group was echinoderms (40 %), mollusks (25 %), other phyla (25 %), and arthropod crustaceans (10 %), respectively.

The H' value in the study area was 2.0, and the highest H' of 3.0 was found at C3 and F15 in June 2015 and A8 and C3 in November 2015. The lowest H' was 0.6 at H12 in June 2015.

3.3 Dominant species

The dominant species (>1% of total density) during this study were the ophiuroid Stegophiura sterea (10.4%), bivalves Mactrinula dolabrata (9.0%) and Acila *divaricata* (8.3%), anthozoan Hormathia andersoni (8.2 %), gastropods Zeuxis siquijorensis (4.7%) and Siphonalia fuscolineata (3.7%), decapod Pandalus gracilis (3.1%), holothuroid Pentacta doliolum (2.1%), anthozoan Flabellum distinctum (1.8%), decapods Parapenaeopsis hardwickii (1.7%) and Charybdis bimaculata (1.7%), echinoid Coelopleurus undulatus (1.5 %), decapods Palaemon gravieri (1.5 %), Paguristes ortmanni (1.3%), and Paguristes digitalis (1.2%), holothuroid Pseudocnus sp. (1.1%), and polychaete Neoleanira areolata (1.1%) (Table 2, Fig. 4). Stegophiura sterea, the most

Fig.4 Dominant species of megabenthos at each stations

Rank	Taxa	Species	% of total density	Freq.(%)
1	EOp	Stegophiura sterea	10.4	21.4
2	MBi	Mactrinula dolabrata	9.0	42.9
3	MBi	Acila divaricata	8.3	21.4
4	Others	Hormathia andersoni	8.2	50.0
5	MGs	Zeuxis siquijorensis	4.7	10.7
6	MGs	Siphonalia fuscolineata	3.7	46.4
7	CDe	Pandalus gracilis	3.1	3.6
8	EHo	Pentacta doliolum	2.1	7.1
9	Others	Flabellum distinctum	1.8	25.0
10	CDe	Parapenaeopsis hardwickii	1.7	7.1
11	CDe	Charybdis bimaculata	1.7	50.0
12	EEc	Coelopleurus undulatus	1.5	7.1
13	CDe	Palaemon gravieri	1.5	25.0
14	CDe	Paguristes ortmanni	1.3	14.3
15	CDe	Paguristes digitalis	1.2	10.7
16	EHo	Pseudocnus sp.	1.1	14.3
17	APo	Neoleanira areolata	1.1	14.3

Table 2. Dominant species ranking based on density

(APo, Polychaeta; MBi, Bivalvia; MGs, Gastropoda; CDe, Decapoda; EHo, Holothuroidea; EOp, Ophiuroidea)

dominant species, appeared with a density of 66.7 ind/100 m² at E1 in November 2015. *Mactrinula dolabrata* appeared with 26.0 ind/100 m² in June 2015 and 29.3 ind/100 m² in November 2015 at B4 in the frontal zone of the South Sea. *Acila divaricata* appeared at a density of 23.7 ind/100 m² in November 2015 and 3.7 ind/100 m² in April 2016 at B4, and 38 ind/100 m² in April 2016 at B2.

3.4 Community structure

A cluster analysis of the Bray - Curtis similarity matrix based on the density of the megabenthos divided the study area into four groups by species contributions: Group A in the frontal zone of the South Sea and C3, Group B in the southeast of Jeju Island, Group C consisting of the southernmost stations, and Group D located diagonally from the south coast to the region west of Jeju (SIMPROF test, P < 0.05) (Fig. 5). The average similarity of Group A was 9.84 %, and poriferans, Munida japonica, Paguristes ortmanni, and Flabellum distinctum contributed 10.40 %, 8.78 %, 8.50 %, and 6.94 %, respectively (Table 3). The average similarity of Group B was 9.08 %, and Solenocera melantho, Mactrinula dolabrata, Leioptilus fimbriatus, and Flabellum distinctum contributed 33.35 %, 24.22 %, 22.58 %, and 7.40 %, respectively. The average similarity of Group C was 25.11 %, and Leptochela sydniensis contributed 100 %. The average similarity of Group D was 25.43 %, and Ormathia andersoni, Siphonalia fuscolineata, Charybdis bimaculata, and Mactrinula dolabrata contributed 28.44 %, 19.39 %, 11.75 %, and 11.50 %, respectively.

Fig. 5. Dendogram and 2-dimensional plot using macrobenthic faunal abundance data by Bray-Curtis similarities calculated on the fourth-root transformed abundance data in the South sea of Korea.

Impact of Environmental Variables on the Diversity and Distribution of the Megabenthos in the South Sea of Korea

	Species	Average Abundance (log)	Contribution %	Cumulative %
	Porifera	0.60	10.40	10.40
Group a	Munida japonica	0.52	8.78	19.18
Average similarity: 9.84 %	Paguristes ortmanni	0.60	8.50	27.68
	Flabellum distinctum	0.65	6.94	34.62
	Solenocera melantho	0.37	33.35	33.35
Group b	Mactrinula dolabrata	0.50	24.22	57.57
Average similarity: 9.08 %	Leioptilus fimbriatus	0.47	22.58	80.15
	Flabellum distinctum	0.40	7.40	87.55
Group c Average similarity: 25.11 %	Leptochela sydniensis	0.72	100	100
	Hormathia andersoni	1.28	28.44	28.44
Group d	Siphonalia fuscolineata	0.96	19.39	47.83
Average similarity: 25.43 %	Charybdis bimaculata	0.66	11.75	59.58
	Mactrinula dolabrata	0.95	11.50	71.08

Table 3. SIMPER analysis of megabenthic fauna, listing the main characterising species at each group

Table 4. BIO-ENV test to analyze the effect of environmental variables on the megabenthic community structure

Number of variables	correlation (%)	Best variables
3	0.353	depth, Gravel %, sorting value(o)
2	0.344	depth, sorting value(o)
3	0.337	depth, Silt %, sorting value(o)
4	0.332	depth, Gravel %, Silt %, sorting value(0)

The BIO-ENV analyses of the megabenthos and environmental variables showed that depth, gravel content, and sorting value (ø) showed the highest correlations with the megabenthic community (Rho = 0.353, P < 0.01) (Table 4). The correlations between the total number of species, diversity, density, biomass, and dominant species with environmental factors were determined (Table 5). The diversity showed a positive correlation with sand content and a significant negative correlation with silt content. The mean density of megabenthos decreased with increasing depth, and biomass increased with increasing gravel content. The major dominant species, Stegophiura sterea, showed a negative correlation with salinity. Zeuxis siquijorensis showed a significant negative correlation with sand content and showed significant positive correlations with silt content, clay content, MZ (ø), and DO. Pandalus gracilis had a significant positive correlation with gravel %. Pentacta doliolum also showed a significant positive correlation with gravel content and a negative correlation with MZ (ø).

4. Discussion

The bottom temperature in June 2015 was relatively lower than in November 2015. Especially, E1 was a low temperature at 10.4 $^{\circ}$ C (Fig. 2). These patterns are caused by the summer cold-weather bottom currents of the Yellow Sea (KIOST, 2018). The bottom temperature in November 2015 considered to be relatively high at the H1 due to the influence of the high-temperature Kuroshio Current driving northward.

During the study period, the total number of megabenthos species, density (ind/100 m²), and biomass (g/100 m²) were 307 species/9900 m², 28.7 ind/100 m², and 81.1 g/100 m², respectively. The species diversity was 2.0. The density of megabenthos decreased with increasing depth, and the biomass increased with increasing gravel content (Table 5). Rex et al.(2000) reported that benthic animals decreased with increasing water depth. Jones et al.(2007) found that the megafaunal assemblages showed a significant correlation with depth, but no correlation between the

Table 5. Spearman rank correlation within the environmental variables and dominant species in sampling periods (*, p<0.05; **, p<0.01; ***, p<0.001)

	Depth(m)	Gravel %	Sand %	Silt %	Clay %	Mean grain size(phi)	Temper -ature	Salinity	Dissolved Oxygen
Number of species	-0.06	0.32	0.29	-0.34	-0.22	-0.26	0.11	-0.10	-0.08
diversity(H')	0.09	0.36	0.42*	-0.50**	-0.27	-0.37	0.03	0.09	-0.01
Density	-0.42*	0.20	-0.11	0.05	0.14	0.05	-0.05	-0.22	0.05
Biomass	-0.25	0.47*	0.11	-0.21	-0.02	-0.19	0.21	0.05	0.03
Stegophiura sterea	-0.27	0.04	-0.11	0.12	-0.04	0.01	-0.35	-0.41*	0.19
Mactrinula dolabrata	0.10	-0.34	-0.21	0.24	0.09	0.17	-0.03	0.02	-0.25
Acila divaricata	-0.16	0.03	-0.22	0.17	0.27	0.25	-0.23	0.06	0.26
Hormathia andersoni	-0.25	-0.24	-0.11	0.09	0.01	0.11	-0.20	-0.22	0.15
Zeuxis siquijorensis	-0.37	-0.14	-0.50**	0.47*	0.52**	0.52**	-0.28	-0.08	0.49**
Siphonalia fuscolineata	-0.11	0.06	0.00	-0.04	0.04	0.00	-0.23	0.01	0.14
Pandalus gracilis	-0.19	0.47*	0.19	-0.19	-0.19	-0.30	0.25	-0.25	0.13
Pentacta doliolum	-0.28	0.68***	0.28	-0.28	-0.28	-0.43*	0.00	-0.29	0.33

diversity of megafauna and depth. The number of species and density of macrobenthos decreased with distance from the coast (Yu et al., 2008). The especially decreasing dissolved organic matter released from the sediment to the water layer is considered to have caused these differences (Kojima and Ohta, 1989). The distribution of megabenthos is affected by food availability and organic matter (Hecker, 1990; Smith et al., 2008). In this study, therefore, the decreased density of megabenthos in deep waters may be related with organic conditions in the sediment. However, it is difficult to explain the relationship between the density and TOC, because TOC analysis has not been performed in this study.

The major dominant species in this study such as S. sterea (EOp), A. divaricata (Mbi), Z. siquijorensis (MGs), P. gracilis (CDe), and P. doliolum (EHo) were found in high density only in certain areas, and H. andersoni (Others), S. fuscolineata (MGs) appeared at the most stations except in the southern sea of Jeju Island (Fig. 4). S. sterea was distributed in the East Sea and Korea Strait at 150-300 m depth (Shin, 1992; García at al., 2002), and in this study, it appeared at high density in E1, west of Jeju Island. M. dolabrata is known to be distributed in the East Sea and East China Sea in silty sand and mud (Barnes, 1997), and dominated at B4 in silty sediment with a mean grain size of 6.4. A. divaricata and Z. siquijorensis were dominant in muddy sediment B2 with mean grain size of 8.1. H. andersoni and S. fuscolineata are usually dominant in subtidal sandy sediment in the South Sea of the Korea as a symbiotic relationship (Hong et al., 2006; Park and Huh, 2018). P. gracilis appears in the southern coast of Korea and the Korea Strait, and plays an important role as an energy transmitter in the food web of the marine ecosystem (Komai,

1999;). In this study, P. gracilis (CDe), P. *doliolum* were dominant in C3 with high density. As a result, the distribution of the dominant species is related to the composition of sediments. In general, deposit feeding macrobenthos dominate in sediments with high silt contents, while suspension feeding macrobenthos dominate in sediments with high sand contents (Sanders, 1958; Paik et al., 2007). Mollusks and crustacea are dominant in sandy sediments with smooth flow of seawater due to the relatively low organic matter contents (Maurer and Leathern, 1981; Frouin, 2000). Crustacea and mollusks are the most diverse epibenthic animal taxa in the numerous trawl investigations (Park and Huh, 2018). In this study, the ratio of mollusks and crustacea was relatively high because it was investigated on megabenthos such as epibenthic animals.

The community structures of megabenthos in this study were divided into 4 groups (Fig. 5). The community structures were affected by many environmental variables (Table 4). The number of species, diversity and biomass were higher in C3 with poor quality sorting value and coarse sand sediment (Fig 3). H12, located in the southernmost of Jeju Island, showed a low number of species, diversity, density and biomass. Rhoads et al.(1985) reported that the density decreases with increased silt and clay contents from the center of the East China Sea to the southern part of Jeju Island, and it was related to resuspension of Yellow Sea sediment. The species diversity of macrobenthos generally increases with fine grain size (McLachlan, 1990), but sometimes the number of species relatively increases with the coarser grain size of the sediment (Lim and Choi, 2001; Yu et al., 2013; Jung et al., 2014). The community structures of megabenthos are affected by

substratum, sediment types (Jones et al., 2007; Yu et al., 2014; Briggs et al, 2017). In the present study, it was noted that the sediment size can affect the species compositions and density south of Jeju Island. In addition, the megabenthos diversity showed a positive correlation with sand content and a significant negative correlation with silt content (Table 5). Therefore, community structures and species composition of megabenthos in this study may be affected by the different sediment composition.

This study was conducted only in Spring and Fall, and we could not identify the changes in seasonal species composition. Megabenthos, which has relatively higher mobility compared to macrobenthos, can actively react with the environmental conditions they inhabit (Seo and Hong, 2007). Therefore, the seasonal investigation of megabenthos needs to be carried out in future studies.

Acknowledgements

We thank three anonymous reviewers for their constructive comments and helpful suggestions on the manuscript. This study was supported by the projects entitled "A base study to understand and counteract marine ecosystem change in Korean waters" (PE99713).

References

- Aller, J. Y. and R. C. Aller(1986), Evidence for localized enhancement of biological associated with tube and burrow structures in deep-sea sediments at the HEEBLE site, western North Atlantic. Deep sea Res. Part a. Vol. 33, No. 6, pp. 755-790.
- [2] Amri, N., S. Jamili and S. Abdolbaghian(2014), Diversity of macrobenthos communities and their relationships with environmental factors in Jajroud River, Iran. Resour. Environ. Vol. 4, pp. 95-103.
- [3] Barnes, A. G.(1997), The functional morphology of *Mactrinula reevesii* (Bivalvia: Mactroidea) in Hong Kong: Adaptations for a deposit-feeding lifestyle. J. Zoo. Land. No. 241, pp. 13-34.
- [4] Briggs, K. B., J. K. Craig, S. Shivarudrappa and T. M. Richards(2017), Macrobenthos and megabenthos responses to long-term, large-scale hypoxia on the Louisiana continental shelf. Mar. Environ. Res. Vol. 123, pp. 38-52.
- [5] Burd, B. J., P. A. G. Baarner, C. A. Wright and R. E.

Thomson(2008), A review of subtidal benthic habitats and invertebrate biota of the strait of Georgia, Britich Columbia Mar. Environ. Res. Vol. 66, pp. S3-38.

- [6] Choi J. W.(2016), Benthic Animals. In: Chang, K. I. et al., (eds) Oceanography of the East Sea (Japan Sea). springer, Cham. pp. 347-372
- [7] Clarke, K. R. and R. M. Warwick(2001), Change in marine communities: An approach to statistical analyses and interpretation. Primer-E Ltd: Plymouth. UK. p. 144
- [8] Folk, R. L. and W. C. Ward(1957), Brazos river bar: A study in the significance of grain-size parameters. J. Sed. Pet. Vol. 27, No. 1, pp. 3-26.
- [9] Frouin, P.(2000), Effects of anthropogenic disturbances of tropical soft-bottom benthic communities. Mar. Eco. Prog. Ser. Vol. 194, pp. 39-53.
- [10] García, J., H. M. Yeh and S. Ohta(2002), Distribution and bathymetric zonation of deep-sea brittle stars (Echinodermata: Ophiuroidea) off the Japanese Pacific coast. J. Mar. Bio. Ass. U.K. Vol. 82, pp. 345-346.
- [11] Gray, J.(1981), The ecology of marine sediments-an introduction to the structure and function of benthic communities. Cambridge Univ. Press. New York. p. 185.
- [12] Hecker, B.(1990), Variation in megafaunal assemblages on the continental margin south of New England. Deep Sea Res. Part A, Oceanogr. Res. Vol. 37, No. 1, pp. 37-57.
- [13] Hong S. Y., K. Y. Park, C. W. Park, C. H. Han, H. L. Suh, S. G. Yun, C. B. Song, S. G. Jo, H. S. Lim, Y. S. Kang, D. J. Kim, C. W. Ma, M. H. Son, H. K. Cha , K. B. Kim, S. D. Choi, K. Y. Park, C. W. Oh, D. N. Kim, H. S. Shon, J. N. Kim, J. H. Choi, M. H. Kim and I. Y. Choi(2006), Marine invertebrates in Korean Coast. Akademy book. ISBN 9788976163738. p. 479.
- [14] Hur, H. B., G. A. Jacobs and W. J. Teague(1999), Monthly variations of water masses in the Yellow and East China Seas, November 6, 1998. J. Oceanogr. Vol. 55, No. 2, pp. 171-184.
- [15] Jang, S. T., J. H. Lee, C. H. Kim, C. J. Jang and Y. S. Jang(2011), Movement of cold water mass in the Northern East China Sea in summer. J. Kor. Soc. Oceanog. Vol. 16, No. 1, pp. 1-13.
- [16] Jones, D. O. B., B. J. Bett and P. A. Tyler(2007), Depth-related changes to density, diversity and structure of benthic megafaunal assemblages in the Fimbul ice shelf region, Weddell Sea, Antarctica. Polar Biol. Vol. 30, pp.

1579-1592.

- [17] Jung, R. H., I. S. Seo, W. C. Lee, H. C. Kim, S. R. Park, J. B. Kim and B. M. Choi(2014), Community Structure and Health Assessment of Macrobenthic Assemblages at Spring and Summer in Cheonsu Bay, West Coast of Korea. J. Kor. Soc. Oceanogr. The Sea. Vol. 19, No. 4, pp. 272 286.
- [18] Kim, D. S., J. H. Shim and S. J. Yoo(2006), Seasonal variations in nutrients and Chlorophyll-a concentrations in the northern East China Sea. Ocean. Sci. J. Vol. 41, pp. 125-137.
- [19] KIOST(2018), A study on ecosystem response to mesoscale ocean processes: Southern Seas of Korea. p. 401.
- [20] Kojima, S. and S. Ohta(1989), Patterns of bottom environments and macrobenthos communities along the depth gradient in the bathyal zone off sanriku, Northwestern Pacific. J. Oceanogr. Soc. Japan. Vol. 45, pp. 95-105.
- [21] Komai, T.(1999), A revision of the genus pandalus (Crustacea: Decapoda: Caridea: Pandalidae). J. Nat. Hist. Vol. 33, pp. 1265-1372.
- [22] Lim, H. S. and J. W. Choi(2001), Community structure of subtidal macrobenthos in Jampyung Bay during autumn in 1997, Southwest Coast of Korea. J. Kor. Fish. Soc. Vol. 34, No. 4, pp. 327-339.
- [23] Linse, K., H. J. Griffiths, D. K. A. Barnes, A. Brandt, N. Davey, B. David, S. D. Grave, C. U. d'Acoz, M. Eléaume, A. G. Glover, L. G. Hemery, C. Mah, R. Martín-Ledo, T. Munilla, M. O'Loughlin, B. Pierrat, T. Saucède, C. J. Sands, J. M. Strugnell and P. Enderlein(2013), The macro- and megabenthic fauna on the continental shelf of the eastern Amundsen Sea, Antarctica. Con. Shelf Res. Vol. 68, pp. 80-90.
- [24] Liu, H., X. Li, Y. Wang, X. Liu, L. Wang, D. Liu, C. Chen, J. Li, H. Jiao and Z. You(2019), Structure of Macrobenthic Assemblages and Its Relationship with Environmental Variables in the East China Sea of Xiangshan. Pakistan J. Zool. Vol. 51, No. 1, pp. 31-47.
- [25] Maurer, D. and W. Leathem(1981), Polychaete feeding guilds from Georges Bank, USA. Mar. Bio. Vol. 62, pp. 161-171.
- [26] McLachlan, A.(1990), Dissipative Beaches and Macrofauna Communities on Exposed Intertidal Sands. J. Coastal Res. Vol. 6, No. 1, pp. 57-71.
- [27] MLTM(2010), Study of the variations in ocean environment and marine ecosystem in the South Sea (northern East China Sea) due to the climate change. BSPM 55670-2202-1. p. 303.
- [28] MLTM(2011), National investigation of marine ecosystem -

easterm South Sea. p. 927.

- [29] MLTM(2012), National investigation of marine ecosystem -Jejudo, Ieodo areas. p. 919.
- [30] MOF(2006), The study of the oceanographic environmental impact in the South Sea (East China Sea) due to the three Gorges Dam. BSPM 40900-1849-7. p. 547.
- [31] Paik, S. G., R. S. Kang, J. O. Jeon, J. H. Lee and S. G. Yun(2007), Distribution patterns of sandy bottom macrobenthic community on the Hupo coastal area, in the East sea of Korea. Ocean Polar Res. Vol. 29, No. 2, pp. 123-134.
- [32] Park, J. M. and S. H. Huh(2018), Epibenthic invertebrate fauna in the southern coast of the East Sea, Korea. J. Asia-Pac. Biodiver. Vol. 11, pp. 217-222.
- [33] Pearson, T. H. and R. Rosenberg(1978), Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr. Mar. Biol. Ann. Rev. Vol. 16, pp. 229-311.
- [34] Pratt, D. R., A. M. Lohrer, C. A. Pilditch and S. F. Thrush(2014), Changes in ecosystem function across sedimentary gradients in estuaries. Ecosystems. Vol. 17, pp. 182-194.
- [35] Rakocinski, C. F., S. S. Brown, G. R. Gaston, R. W. Heard, W. W. Walker and J. K. Summers(1997), Macrobenthic responses to natural and contaminant-related gradients in northern gulf of Mexico estuaries. Ecol. Appl. Vol. 7, pp. 1278-1298.
- [36] Ramirez-Llodra, E., J. B. Company, F. Sardà and G. Rotllant(2010), Megabenthic diversity patterns and community structure of the Blanes submarine canyon and adjacent slope in the Northwestern Mediterranean: A human overprint? Mar. Ecol. Vol. 31, No. 1, pp. 167-182.
- [37] Reiss, H. and I. Kröncke(2005), Seasonal variability of benthic indices: an approach to test the applicability of different indices for ecosystem quality assessment. Mar. Pollut. Bull. Vol. 50, No. 12, pp. 1490-1499.
- [38] Rex, M. A., C. T. Stuart and G. Coyne(2000), Latitudinal gradients of species richness in the deep-sea benthos of the North Atlantic. PNAS. Vol. 97, pp. 4082-4085.
- [39] Rhoads, D. C., D. F. Boesch, T. Zhican, X. Fengshan, H. Liqiang and K. J. Nilsen(1985), Macrobenthos and sedimentary facies on the Changjiang delta platform and adjacent continental shelf, East China Sea. Continental Shelf Res. Vol. 4, pp. 189-213.
- [40] Rodrigues, N., R. Sharma and B. N. Nath(2001), Impact of

Impact of Environmental Variables on the Diversity and Distribution of the Megabenthos in the South Sea of Korea

benthic disturbance on megafauna in Central Indian Basin. Deep Sea Res. Part Ⅱ. Vol. 48, pp. 3411-3426.

- [41] Sanders, H. L.(1968), Marine benthic diversity: A comparative study. Am. Nat. Vol. 102, No. 925, pp. 243-282.
- [42] Seo, I. S. and J. S. Hong(2007), Diurnal and Tidal Variation in the Abundance of the Macro- and Megabenthic Assemblages in Jangbong Tidal Flat, Incheon, Korea. J. Korean. Soc. Oceanogra. The Sea. Vol. 12, No. 4, pp. 262-272.
- [43] Shannon, C. E. and W. Wiener(1963), The Mathematical Theory of Communication. University Illinois Press. Urbaba. p. 125
- [44] Shin, S.(1992), A systematic study on the Ophiuroidea in Korea 1. Species from the sea of Japan and the Korea Strait. Kor. J. Syst. Zool. Vol. 8, No. 1, pp. 107-132.
- [45] Smith, C. R., A. F. Bernardino, A. K. Sweetman and P. M. Arbizu(2008), Abyssal food limitation, ecosystem structure and climate change. Trend Ecol. Evol. Vol. 23, pp. 518- 528.
- [46] Sibaja-Cordero, J. A., J. S. Troncoso, J. Cortés, J. Moreira, J. A. Vargas and C. Benavides-Varela(2016), Biodiversity and density of subtidal benthos of an oceanic tropical island (a comparison within the Pacific Ocean). J. Sea Res. Vol. 115, pp. 47-58.
- [47] Snelgrove, P. V. R.(1998), The biodiversity of macrofaunal organic in marine sediments. Biodiv. Conserv. Vol. 7, No. 9, pp. 1123-1132.
- [48] Somerfield P.(2008), Identification of the Bray-curtis similarity index: comment on Yoshioka. Mar. Ecol. Prog. Ser. Vol. 372, pp. 303-306.
- [49] Volkenborn, N., S. I. C. Hedtkamp, J. E. E. van Beusekom and K. Reise(2007) Effects of bioturbation and bioirrigation by lugworms (Arenicola marina) on physical and chemical sediment properties and implications for intertidal habitat succession. Estuar. Coast. & Shelf Sci. Vol. 74, pp. 331-343.
- [50] Weston, D. P.(1988), Macrobenthos-sediment relationships on the continental shelf off cape hatteras, North Carolina. Cont. Shelf. Res. Vol. 8, No. 3, pp. 267-286.
- [51] Yu, O. H., S. G. Paik, H. G. Lee, C. K. Kang, D. S. Kim, J. H. Lee and W. S. Kim(2008), A Preliminary Study of the Effect of Pelagic Organisms on the Macrobenthic Community in the Adjacent East China Sea and Korea Strait. Ocean and Polar Res. Vol. 30, No. 3, pp. 303-312.
- [52] Yu, O. H., H. G. Lee, J. H. Lee, K. T. Kim, C. S. Myung, H. T. Moon and J. Y. Byun(2013), Spatial variation in

macrobenthic communities affected by the thermal discharge volumes of a nuclear power plant on the East Coast of Korea. Ocean and Polar Res. Vol. 35, No. pp. 299-312.

- [53] Yu, O. H., J. W. Son, D. J. Ham, G. C. Lee and K. H. Kim(2014), The Distribution of Epifaunal Megabenthos Varies with Deep-sea Sediment Conditions in the Korea Deep Ocean Study Area (KODOS) of the North-eastern Pacific. Ocean and Polar Res. Vol. 36, NO. 4, pp. 447-454.
- [54] Yoon, Y. H.(2013), Vertical Profiles of Marine Environments and Micro-phytoplankton Community in the Continental Slope Area of the East China Sea in Early Summer 2009. J. Korean Soc. Mar. Environ. Eng. Vol. 16, No. 3, pp. 151-162.

Received : 2019. 05. 10. Revised : 2019. 05. 27. Accepted : 2019. 05. 28.

Su Min Kang \cdot Ok Hwan Yu \cdot Hyung Gon Lee

Taxon								
Polychaete	Crustacea Decapoda	Ceratopagurus pilosimanus	Entricoplax vestita					
Aphrodita sp.	Aegaeon lacazei	Dardanus arrosor	Eplumula phalangium					
Aphrodita talpa	Aegaeon rathbuni	Diogenes edwardsii	Ethusa quadrata					
Arabella iricolor	Alpheus brevicristatus	Diogenes sp.	Euclosiana obtusifrons					
Eunice indica	Alpheus japonicus	Paguristes digitalis	Eumedonus zebra					
Eunice sp.1	Alpheus sp.1	Paguristes japonicus	Hemigrapsus penicillatus					
Eunoe shirikishinensis	Axiopsis consobrina	Paguristes ortmanni	Latreillopsis bispinosa					
Glycera nicobarica	Betaeus granulimanus	Paguristes sp.	Leptomithrax bifidus					
Iphione ovata	Birulia kishinouyei	Pagurus brachiomastus	Leptomithrax edwardsii					
Lagis bocki	Crangon affinis	Pagurus debius	Liocarcinus corrugatus					
Lepidonotus spiculus	Crangon hakodatei	Pagurus gracilipes	Maja japonica					
Marphysa bellii	crangon sp.	Pagurus minutus	Mursia trispinosa					
Neoleanira areolata	hadropenaeus lucasii	Pagurus pectinatus	Ovalipes punctatus					
Nereis longior	Heptacarpus acuticarinatus	Pagurus pilosipes	Petalomera yamashitai					
Onuphis sp.	Hippolyte sp.	Pagurus proximus	Pilumnus minutus					
Phylo sp.	Latretus anoplonyx	Pagurus similis	Pilumnus sp1.					
Sabellarte sp.	Latreutes sp.	pagurus sp.	Pinnotheres pholadis					
Sternaspis chinensis	Leptochela gracilis	Pagurus triserratus	Platymaia alcocki					
Terebellides horikoshii	Leptochela sp.	Galathea orientalis	Platymaia wyvillethomsoni					
Pycnogonida	Leptochela sydniensis	Munida japonica	Pleistacantha sanctijohannis					
Ascorhynchus glaberrimum	Metacrangon sinensis	Paramunida scabra	Portunus (monomia) gladiator					
Nymphon kodanii	Metapenaeopsis dalei	Achaeus japonicus	Portunus (portunus) trituberculatus					
Crustacea Isopoda	Palaemon gravieri	Achaeus tuberculatus	Portunus pelagicus					
Cymodoce acuta	Palaemon ortmanni	Anatolikos sp.	Pugettia incisa					
Cymodoce japonica	Pandalus gracilis	Cancer gibbulosus	Pugettia vulgaris					
Janira sp.	Paracrangon abei	Cancer sp.	Puggetia sp.					
Pleuroprion sp1	Parapenaeopsis hardwickii	Carcinoplax longimana	Randallia eburnea					
Crustacea Amphipoda	Petrarctus brevicornis	Carcinoplax purpurea	Romaleon gibbosulum					
Ampelisca miharaensis	Plesionika ortmanni	Carcinoplax sp.	Scyra sp.					
Aorcho nanus	solenocera comata	Carcinoplax surugensis	Trachycarnicus balssi					
Gammaropsis japonicus	Solenocera melantho	Carcinoplax vestita	Tymolus japonicus					
Liljeborgia japonica	Trachysalambria curvirostris	Charybdis bimaculata	Singhaplax danielae					
Melita denticulata	Callianassa japonica	Charybdis riversandersoni	Scalopidia spinosipes					
Pareuystheus latipes	Boninpagurus pilosipes	Choniognathus reini						
Protomedeia crudoliops	Catapagurus sp.	Entomonyx spinosus						

appending in the net of the megacentice concerted in this state,	Appendix	1.	The	list	of	the	megabenthos	collected	in	this	study	
--	----------	----	-----	------	----	-----	-------------	-----------	----	------	-------	--

Impact of Environmental Variables on the Diversity and Distribution of the Megabenthos in the South Sea of Korea

Appendix	1.	(continued)
	. .	(• one of the other)

Taxon								
Crustacea Stomatopoda	Stegophiura sterea	Inquisitor nudivaricosus	Porifera unid.					
Oratosquilla oratoria	Ophiothrix (Ophiothrix) koreana	Mactrinula dolabrata	Cnidaria					
Squilla sp. Echinoidea		Microfusus magnifica magnifica	Adeona sp.					
Crinoidea	Clypeasteroida sp.	Nassarius variciferus	Bellonella rigida					
Crinoidea sp.	Coelopleurus undulatus	Neptunea sp.	Bellonella rubra					
Asteroidea	Phalacrocidaris japonica	Nudibranchia	Echinoptillum macintoshi					
Aphelasterias sp.	Schizaster lacunosus	Primovula frumentum	Flabellum distinctum					
Asterina sp.	Stereocidaria japonica	Siphonalia fuscolineata	Flabellum (Ulocyathus) deludens					
Asteropecten kagoshimensis	Strongylocentrotus nudus	Siphonalia fusoides	Hormathia andersoni					
Astroboa arctos	Temnotrema rubrum	Tristichotrochus aculeatus	Maldreporaria sp.					
astrocladus coniferus	Holothuroidea	Tristichotrochus haliarchus	paraspongodes hirotai					
Astropecten polyacanthus	Molpadia oolitica	unedogemmula deshayesi	Paraspongodes spiculosa					
Ctenopleura fisheri	Pentacta doliolum	Vokesimurex rectirostris	Pennatulacea					
Ctenopleura sp.	Pseudocnus sp.	Zeuxis siquijorensis	Scleractinia sp.					
Dipsacater pretiosus	Polyplacophora	Bivalvia	Aglaophenia sp.					
Echiniasteridae	Leoidozona andrigiaschevi	Acila divaricata	Sipunculida					
Henricia ohshimai	Gastropoda	Acila mirabilis	Phascolosoma agassizii					
Leptychaster anomalus	Adamnetia japonica	Angulus vestalioides	Brachiopoda					
Luidia quinaria	Boreotrophon candelabrum	Chlamys irregularis	Ctenoides annulata					
Ophiuroidea	Brachytoma tuberosa	Chlamys nobilis	Laqueus sp.					
Amphioplus sp.	Bullacta exarata	Chlamys squamata	Terebratuling japonuca					
Amphiura koreae	Calliostoma consors	Clycymeris imperialis	Bryozoa					
astrocladus coniferus	Calliostoma koma	Cryptopecten vesiculosus	<i>Bryozoa</i> sp.					
Crossaster sp.	Calyptraea sp.	Enucula tenuis	Chordata					
Ophiocentrus sp.	Chicoreus aculeatus	Hawaiarca uwaensis	Ciona sp.					
Ophiocreas caudatus	Crepidula sp.	Lima fujitai						
Ophiocreas sp.	Cymatium parthehopeum	Mactrinula dolabrata						
Ophiogymma sp.	Cyprass vitellus	Meiocardia tetragona						
Ophionereis eurybrachiplax	Dhiline argentata	Modiolus elongatus						
Ophionereis variegata	Emarginula crassicostata	Nitidotellina nitidula						
Ophiopholis mirabilis	Emarginula sp.	Portlandia lischkei						
Ophiopsammus anchista	Fascioariidae	Striarca symmetrica						
Ophiotrix sp.	Fusinus ferrugineus	Porifera						
Ophiura sp.	Gemmula kieneri	Axinella sp.						
Pectinura sp.	Guildfordia triumphans	Oscarella lobularis						
Stegophiura sp.	Inquisitor jeffreysii	Polyclinidae						