• Title/Summary/Keyword: friendly materials

Search Result 1,773, Processing Time 0.031 seconds

Disaster Prevention Technology in Response to Flooded Areas Using Drone Image-Based Inundation Monitoring and Prefabricated Rainwater Penetration Storage Block Structure (드론영상 기반 침수 모니터링 및 조립식 빗물 침투 저류블록 구조를 활용한 상습 침수지역 대응 방재기술)

  • Choi, Hee-Yong;Choi, Hyeong-Gil;Ryu, Jung-Rim;Kim, Won-Chang;Lee, Tae-Gyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.411-412
    • /
    • 2023
  • The purpose of this research and development is to develop a structure module that improves the efficiency and constructability of the layout structure as well as the design development of rainwater permeable storage tank blocks using inorganic binders and aggregates with the aim of reducing greenhouse gas (CO2) with eco-friendly materials. In addition, for the efficient response to flooding of the developed permeable storage structure, we present a technical solution for combining drone mapping technology and flood monitoring technology that can analyze topographical factors in detail.

  • PDF

Accumulation of Heavy Metals in Soil Growing for Red Pepper (Capsicum annuum) with using Lime Bordeaux and Lime Sulphur Mixture

  • Lee, Hyun Ho;Kim, Keun Ki;Lee, Yong Bok;Kwak, Youn Sig;Ko, Byong Gu;Lee, Sang Beom;Shim, Chang Ki;Hong, Chang Oh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.4
    • /
    • pp.318-324
    • /
    • 2017
  • Lime bordeaux mixture (LBM) and lime sulfur mixture (LSM) are representative environmental friendly organic materials for prevention of insect pests in South Korea. Recently, those have been widely used as an alternative for chemical pesticides in eco-friendly farms. However, South Korea has not established even recommendation of LBM and LSM considering the stability of heavy metals in soil. The aim of this study was to evaluate the accumulation of hazardous heavy metals in soil and plant with long-term application of LBM and LSM. Firstly, we investigated the amount of LBM and LSM used per year in several eco-friendly farms to determine a standard application rate of both materials. The pepper plant was grown on the pot in greenhouse for 14 weeks. Both materials were applied at 0, 1, 3, and 9 times of standard application rates (2.56 and $1.28L\;ha^{-1}$ of LBM and LSM per year, respectively). Dry matter yield of pepper and heavy metals (As, Cd, Cu, Hg, Ni, Pb, and Zn) concentration in soil and pepper plant were measured after 14 weeks. Yield of pepper plant did not significantly chang with up to application rate of 1 times, thereafter it markedly decreased with more than 3 times. With increasing LBM and LSM application, the concentration of Cu and Zn in soil significantly increased. Especially, Zn concentration in pepper significantly increased with increasing application rates of both materials. This might resulted in significant decrease in dry matter yield of pepper. The concentrations of those heavy metals in soil did not exceed safety levels ($150mg\;kg^{-1}$ for Cu and $300mg\;kg^{-1}$ for Zn) established by the Korean Soil Environmental Conservation Act as well as concentration of heavy metals in pepper plant by Korean Ministry of Food and Drug Safety. However, particular attention should be paid for heavy metal safety and crop productivity when using LBM and LSM in the organic farm.

Growth Inhibition Effect of Environment-friendly Farm Materials in Colletotrichum acutatum In Vitro (친환경 유기 농자재의 고추 탄저병(Colletotrichum acutatum) 병원균의 생장 억제 효과)

  • Kwak, Young-Ki;Kim, Il-Seop;Cho, Myeong-Cheoul;Lee, Seong-Chan;Kim, Su
    • Journal of Bio-Environment Control
    • /
    • v.21 no.2
    • /
    • pp.127-133
    • /
    • 2012
  • Inhibition effects on spore germination and mycelia growth for pepper anthracnose fungi (Collectricum acutatum) were investigated in vitro using eco-friendly agricultural materials as well as ecofriendly pesticides. The inhibition effect on mycelia growth of anthracnose fungi is the highest when the anthracnose mycelia were treated with a pesticide (commercial name: Koreayeok) that contains a mixture of Bacillus subtilis and Panibacillus polymyxa, resulting in 100% inhibition of the mycelia growth. Meanwhile, the range of 20~40% inhibition effects on the growth of anthracnose mycelia was observed with other commercial agricultural materials. The significant inhibition effects on spore formation of anthracnose fungus were shown in vitro with two water dispersible pesticides containing sulfur [BTB (100%) and SulfurStar (95.1%)], Koreayeok (95.0%), Borstar (99.0%) containing Bordeaux mixture, and Jihabudea-KM containing Psedomonas spp. (96.1%), respectively. Taken from these in vitro results of inhibiting of the spore germination and mycelia growth together, Koreayeok is the most effective on control of pepper anthracnose disease in vitro. In addition, two water dispersible pesticides containing sulfur (BTB and SulfurStar) and Borstar (99.0%) containing Bordeaux mixture are also significantly applicable to prevent pepper plants from anthracnose disease in vitro. It remains to be determined whether the selected eco-friendly agricultural materials in effective control of anthracnose in vitro can be used to control pepper anthracnose in field.

Allowable Stress Calculation of Domestic Japanese Larch Small Diameter Lumbers (국내산 낙엽송 소경각재의 허용응력 산출)

  • Kim, Yun-Hui;Shin, Il-Joong;Yang, Jung-Mo;Jang, Sang-Sik
    • Journal of the Korea Furniture Society
    • /
    • v.23 no.2
    • /
    • pp.214-221
    • /
    • 2012
  • Sustainable energy consumption and increasing $CO_2$ emissions stimulate Eco-friendly industry. Wood has positive various properties as alternative energy such as solar, wind and water. Wood provide lumber, pallet, paper, pulp and fuel through production process. Even Korea republic has 63.7% of forest rates, weather condition makes low forestry production capacity. For utilization of domestic small diameter log needs study mechanical properties. In this study, various properties tested on domestic Japanese Larch small diameter lumbers and make mechanical properties table for allowable stress calculation. Result of compressive test, allowable compressive stress is 13 MPa. Allowable bending stress is 12 MPa.

  • PDF

Application of silk composite to decorative laminate

  • Kimura, Teruo;Aoki, Shinpei
    • Advanced Composite Materials
    • /
    • v.16 no.4
    • /
    • pp.349-360
    • /
    • 2007
  • Recently, natural fiber reinforced composite is attracting attention and considered as an environmentally friendly material. Usually cellulosic fibers are used to reinforce the composites, but some protein fibers such as silk and wool serve the same purpose. In this paper, we proposed a method of producing artistic composite from artistic fabric by using silk fiber reinforced biodegradable plastic, which is designated as 'silk composite', for reinforcement. In order to expand applications of the silk composite, we performed the compression molding of decorative laminates with woody material, which was selected as a core material, and examined the properties of molded decorative laminates with various content of the silk composite. Since plywood and medium-density fiberboard (MDF) are widely used for decorative laminates, we selected them as core materials. As a result, flexible decorative laminates with high flexural strength were obtained by compounding the silk composite with wood materials.

Facile and Ecofriendly Fluorination of Graphene Oxide

  • Yadav, Santosh Kumar;Lee, Jin Hong;Park, Hun;Hong, Soon Man;Han, Tae Hee;Koo, Chong Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.2139-2142
    • /
    • 2014
  • A one-pot, facile and ecofriendly approach to the fabrication of covalently fluorinated graphene using mild reaction conditions is reported. This straightforward and efficient strategy allows fluorine groups to be covalently and stably anchored onto graphene to produce single-layer functionalized graphene sheets from a graphene oxide precursor.

Effective Material Properties of Composite Materials by Using a Numerical Homogenization Approach (균질화 접근법을 통한 복합재의 유효물성치 계산)

  • Anto, Anik Das;Cho, Hee Keun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.12
    • /
    • pp.28-37
    • /
    • 2019
  • Due to their flexible tailoring qualities, composites have become fascinating materials for structural engineers. While the research area of fiber-reinforced composite materials was previously limited to synthetic materials, natural fibers have recently become the primary research focus as the best alternative to artificial fibers. The natural fibers are eco-friendly and relatively cheaper than synthetic fibers. The main concern of current research into natural fiber-reinforced composites is the prediction and enhancement of the effective material properties. In the present work, finite element analysis is used with a numerical homogenization approach to determine the effective material properties of jute fiber-reinforced epoxy composites with various volume fractions of fiber. The finite element analysis results for the jute fiber-reinforced epoxy composite are then compared with several well-known analytical models.

Development of Soil-cement in Earth-block Materials

  • Wiwattanachang, N;Maneein, N;Parwong, T;Nummeesri, K
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.1
    • /
    • pp.78-85
    • /
    • 2015
  • In Thailand, the electricity consumption is very high with the intention of reduce high temperature in the building. Since 2000, a lot of people paying attention to Green-Building concept. A similar concept is natural building, which is usually on a smaller scale and tends to focus on the use of natural materials that are available locally. Therefore, the Earth-Block (EAB) product is appropriated approach to reduce energy consumption in the buildings. The EAB is produced with environmentally friendly process, which does not release harmful pollution and effective cost. The main significant character is durable materials for building construction. This study aims to develop the new thermal insulation by using soil-cement with vetiver grass fibre. Additionally, it describes the innovative systems used in production of EAB materials by mixing the soil-cement with vetiver grass fibre. This paper reveals lowest costs, space configurations changing and greater design flexibility for constructing the building.

The mechanical properties of Muddy tidal flat mortar with Standard gradiation of Marine sand (표준입도 분포의 해사를 사용한 갯벌 모르타르의 역학적 특성)

  • Kim, hui doo;Choi, Sung Jin;Yang, Seong Hwan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.36-37
    • /
    • 2014
  • Construction work in island areas requires the materials to be transported by ship and plane, and it causes an increase in the construction costs. In addition, the construction work near marine zones may produce the marine pollution due to the harmful substances in the cement. Recently, nature-friendly construction materials are increasingly used, and there is a need to select and develop appropriate construction materials. In this study, the compressive strength, tensile strength, flow and chloride content of the mortar mixed with cement and muddy tidal flat were measured to reduce the amount of cement by applying the natural materials, muddy tidal flat and marine sand, and the results were provided as the basic construction material data.

  • PDF

Technology of Electrical Barrier Material (전기차단성 소재 기술)

  • Shin, Eun-Mi
    • Elastomers and Composites
    • /
    • v.46 no.1
    • /
    • pp.22-28
    • /
    • 2011
  • Various materials are used as electrical barrier materials, such as glass, insulating oil, gas, paper and polymer. These materials shut off electricity from conductor as a barrier and separate as well as support conductor from outside environment while using electrical equipment. Polymers are generally used for cable insulation material. Recently environmental regulation are reinforced and eco-friendly materials are in trend.