• Title/Summary/Keyword: friendly materials

Search Result 1,754, Processing Time 0.026 seconds

Improvement of Biomineralization of Sporosarcina pasteurii as Biocementing Material for Concrete Repair by Atmospheric and Room Temperature Plasma Mutagenesis and Response Surface Methodology

  • Han, Pei-pei;Geng, Wen-ji;Li, Meng-nan;Jia, Shi-ru;Yin, Ji-long;Xue, Run-ze
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.9
    • /
    • pp.1311-1322
    • /
    • 2021
  • Microbially induced calcium carbonate precipitation (MICP) has recently become an intelligent and environmentally friendly method for repairing cracks in concrete. To improve on this ability of microbial materials concrete repair, we applied random mutagenesis and optimization of mineralization conditions to improve the quantity and crystal form of microbially precipitated calcium carbonate. Sporosarcina pasteurii ATCC 11859 was used as the starting strain to obtain the mutant with high urease activity by atmospheric and room temperature plasma (ARTP) mutagenesis. Next, we investigated the optimal biomineralization conditions and precipitation crystal form using Plackett-Burman experimental design and response surface methodology (RSM). Biomineralization with 0.73 mol/l calcium chloride, 45 g/l urea, reaction temperature of 45℃, and reaction time of 22 h, significantly increased the amount of precipitated calcium carbonate, which was deposited in the form of calcite crystals. Finally, the repair of concrete using the optimized biomineralization process was evaluated. A comparison of water absorption and adhesion of concrete specimens before and after repairs showed that concrete cracks and surface defects could be efficiently repaired. This study provides a new method to engineer biocementing material for concrete repair.

Life Cycle Assessment of Rural Community Buildings Using OpenLCATM DB (OpenLCATM DB를 이용한 농촌 공동체 건축물 전과정평가)

  • Kim, Yongmin;Lee, Byungjoon;Yoon, Seongsoo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.3
    • /
    • pp.97-105
    • /
    • 2021
  • Most of the rural development projects for the welfare of residents are mainly new construction and remodeling projects for community buildings such as village halls and senior citizens. However, in the case of the construction industry, it has been studied that 23% of the total carbon dioxide emissions generated in Korea are generated in the building-related sector. (GGIC, 2015) In order to reduce the emission of environmental pollutants resulting from construction of rural community buildings, there is a need to establish a system for rural buildings by predicting the environmental impact. As a result of this study, the emissions of air pollutants from buildings in rural communities were analyzed by dividing into seven stages: material production, construction, operation, maintenance, demolition, recycling, and transportation activities related to disposal. As a result, 12 kg of carbon dioxide (CO), 0.06 kg of carbon monoxide (CO), 0.02 kg of methane (CH), 0.04 kg of nitrogen oxides (NO), 0.02 kg of sulfurous acid gas (SO), and non-methane volatile organics per 1m of buildings in rural communities It was analyzed that 0.02 kg of compound (NMVOC) and 0.00011 kg of nitrous oxide (NO) were released. This study proved that environmentally friendly design is possible with a quantitative methodology for the comparison of operating energy and air pollutant emissions through the design specification change based on the statement of the rural community building. It is considered that it can function as basic data for further research by collecting major structural changes and materials of rural community buildings.

Factors Effecting the Strength & Durability of Geopolymer Binder: A Review (지오폴리머의 강도와 내구성에 영향을 미치는 요인에 대한 고찰)

  • On, Jeong-Kwon;Kim, Gyu-Yong;Sasui, Sasui;Lee, Yae-Chan;Eu, Ha-Min
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.460-468
    • /
    • 2021
  • Owing to the production of conventional concrete/cement, the climate crises is increasing and is mainly caused greenhouse gas (GHG) emission into the environment by industrial process. To reduce the emission of GHG, and excessive consumption of energy, research on geopolymer binder is increasing as it is environmentally friendly compared to the conventional binders such as Portland cement. The research on improving the strength and durability of geopolymer cement becomes one of the trending researches. Generally, the strength and durability of geopolymer binders are improved by altering alkaline solution & its concentration, the precursor materials and curing temperature & time, which significantly influence the chemical composition and microstructure of geopolymer to which the strength and durability of geopolymers relies. This paper included the detailed discussion on the factors affecting the mechanical properties and durability of geopolymer binder and the influence of reaction mechanism on the strength and durability of geopolymer is also discussed in this paper.

Effect of Biophilic-Horticultural Education on Children's Multisensory Enhancement

  • Kwack, Hyeran;Chae, Meeyeoun
    • Journal of People, Plants, and Environment
    • /
    • v.21 no.6
    • /
    • pp.501-514
    • /
    • 2018
  • This study aimed to develop a program that can be linked to gardening education activities in elementary students' curriculums and creative experience learning courses, and to apply the developed program to 6th graders in an elementary school located in Seoul. Research was conducted in a large category called biophilia, which named the instinct of human nature and nature throughout the research. The curriculum revised in 2015 was selected for the purpose of the garden education program based on the objectives and contents of the unit, and for the purpose of the class. In the process of developing and implementing the program, experience properties and elements were divided into direct and indirect experience of nature, including shapes and forms found in nature, air, water, plants, weather, animals, and natural materials. The results showed that the biophilic horticultural education program was effective in promoting students' multi senses. In the case of the experimental group, all the multi-sensory areas showed statistically significant differences, especially in the area of environmental literacy, environmental effect and emotional balance including plant cultivation knowledge. There was a relatively smaller difference in the dietary effect area than other areas because of no directional dietary program was included in the developed program. As a result, first, it is expected that the data can be utilized on site as a program or place of activity for students in upper grades. Second, it will be necessary to develop a more diverse program using other biophilic elements that were not covered in this study in order to maximize the effects of biophilic education.

Development of Korean Type Up-cycled Design Products (한국적 업사이클링 디자인 제품개발)

  • Han, Jihae;Kim, Seongdal
    • Journal of Fashion Business
    • /
    • v.23 no.4
    • /
    • pp.127-139
    • /
    • 2019
  • Up-cycling has evolved from its original form of the simple recycling of waste, into an industry of its own that has been gaining momentum. In many developed industries, up-cycling is increasingly seen as an 'environmentally-friendly way of production and ethical way of consumption'. However, an examination of the designs of branded up-cycled products suggests that there is a need for product development fueled by further research on materials. The purpose of this study is to introduce various production methods that can overcome the shortcomings of using waste material and Korean motifs for use in product development, which ultimately contribute to enhancing the potential variety and character of up-cycled products. In order to do so, the up-cycling industry was examined to define key concepts, domestic and overseas markets were surveyed, and case analyses were conducted on domestic and foreign up-cycling brands. In addition, after tracking how leather is discarded and accumulated as waste and then collecting the discarded leather, the properties of the material were analyzed. A study of Korean motifs was followed by the concept summary, and upcycling design expressions that exemplify Korean images were identified. The following two novel methods were used to create six up-cycled bags using collected discarded leather. First, lucky bags and moon pots were selected from various Korean motifs in order to use motifs with identifiable features. Secondly, different variations of cutting and attachment methods were used, including iron mold production methods and presses.

Effects of Air-Dried Leaves of Evergreen Broad-Leaved Trees on Sound Absorption Property

  • JUNG, Su-Young;KONG, Ree-Keun;LEE, Kwang-Soo;BYEON, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.5
    • /
    • pp.482-490
    • /
    • 2021
  • This research was conducted to analyze the sound absorption effect of air-dried leaves from two evergreen tree species found in Korea's warm-temperate and subtropical regions. As eco-friendly sound absorption materials, Dendropanax morbiferusa, and Fatsia japonica leaves were prepared in three specimen units sizes 0.5 × 0.5 cm2, 1.0 × 1.0 cm2, and 2.0 × 2.0 cm2, and each of them was formed at a thickness of 1.00 cm, 1.75 cm, and 2.50 cm. The measured sound absorption coefficients (SAC) for 18 conditions were comparatively analyzed in this study. The SAC of both tree species was significantly improved by increasing the dried leaf layer thickness. These results showed a more consistent and distinct trend for both tree species under the condition of 0.5 cm2 in dried leaf size compared to other leaf specimen sizes. However, as the thickness increased, the difference in sound absorption effect according to the leaf size tends to decrease overall. In the case of D. morbiferus, there was no significant difference in SAC based on leaf size under the condition of 2.5 cm thickness (p < 0.05). The highest mean SAC was found in a 2.5 cm thick condition with a leaf size of 0.5 × 0.5 cm2, 0.549 for D. morbiferusa, and 0.594 for F. japonica, respectively.

Synthesis and Evaluation of Superhydrophobic ODA/PDMS Dip Coating on PET for Liquid-Solid Contact Electrification (액체-고체 접촉대전을 위한 PET 기판 기반 ODA/PDMS 딥 코팅 제조 및 평가)

  • Park, Sunyoung;Kang, Hyungyu;Byun, Doyoung;Cho, Dae-Hyun
    • Tribology and Lubricants
    • /
    • v.37 no.2
    • /
    • pp.71-76
    • /
    • 2021
  • As opposed to using fossil fuels, we need to use eco-friendly resources such as sunlight, raindrops and wind to produce electricity and combat environmental pollution. A triboelectric nanogenerator (TENG) is a device that converts mechanical energy into electricity by inducing repetitive contact and separation of two dissimilar materials. During the contact and separation processes, electron flow occurs owing to a change in electric potential of the contacting surface caused by contact electrification and electrostatic induction mechanisms. A solid-solid contact TENG is widely known, but it is possible to generate electricity via liquid-solid contact. Therefore, by designing a hydrophobic TENG, we can gather electricity from raindrop energy in a feasible manner. To fabricate the superhydrophobic surface of TENGs, we employ a dip coating technique to synthesize an octadecylamine (ODA)- and polydimethylsiloxane (PDMS)-based coating on polyethylene terephthalate (PET). The synthesized coating exhibits superhydrophobicity with a contact angle greater than 150° and generates a current of 2.2 ㎂/L while water droplets fall onto it continuously. Hence, we prepare a box-type TENG, with the ODA/PDMS coating deposited on the inside, and place a 1.5 mL water droplet into it. Resultantly, we confirm that the induced vibration causes continuous impacts between the ODA/PDMS coating and the water, generating approximately 100 pA for each impact.

Tensile Strength Application Using a Definitive Screening Design Method in Friction Stir Welding of Dissimilar Cast Aluminum and High-Strength Steel with Pipe Shape (파이프 형상의 이종 주조알루미늄-고장력강의 마찰교반용접에서 확정선별설계법에 의한 인장강도 응용)

  • Choy, Lee-jon;Park, Seong-Hwan;Lee, Myung-Won;Park, Jae-Ha;Choi, Byeong-Joon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.10
    • /
    • pp.98-104
    • /
    • 2020
  • Recently, friction stir welding of dissimilar materials has become one of the biggest issues in lightweight and eco-friendly bonding technology. In this study, a lightweight torsion beam axle, which is an automobile chassis component, was used in the welding to cast aluminum material. The friction stir welding process of A357 cast aluminum and FB590 high-strength steel as well as the effects of the process parameters were investigated and optimized using a novel definitive screening design (DSD). ANOVA was used to predict the importance of the process parameters with 13 degradation experiments using the proposed DSD. Also, FSWed experiments were conducted using an optical microscope analysis to investigate the tensile strength behavior in the weld area. In addition to determining the interaction between the tool's rotational speed and the plunge speed, results indicate that the influence of the plunge depth was the most significant.

Photoacoustic imaging of occlusal incipient caries in the visible and near-infrared range

  • da Silva, Evair Josino;de Miranda, Erica Muniz;de Oliveira Mota, Claudia Cristina Brainer;Das, Avishek;Gomes, Anderson Stevens Leonidas
    • Imaging Science in Dentistry
    • /
    • v.51 no.2
    • /
    • pp.107-115
    • /
    • 2021
  • Purpose: This study aimed to demonstrate the presence of dental caries through a photoacoustic imaging system with visible and near-infrared wavelengths, highlighting the differences between the 2 spectral regions. The depth at which carious tissue could be detected was also verified. Materials and Methods: Fifteen permanent molars were selected and classified as being sound or having incipient or advanced caries by visual inspection, radiography, and optical coherence tomography analysis prior to photoacoustic scanning. A photoacoustic imaging system operating with a nanosecond pulsed laser as the light excitation source at either 532 nm or 1064 nm and an acoustic transducer at 5 MHz was developed, characterized, and used. En-face and lateral(depth) photoacoustic signals were detected. Results: The results confirmed the potential of the photoacoustic method to detect caries. At both wavelengths, photoacoustic imaging effectively detected incipient and advanced caries. The reconstructed photoacoustic images confirmed that a higher intensity of the photoacoustic signal could be observed in regions with lesions, while sound surfaces showed much less photoacoustic signal. Photoacoustic signals at depths up to 4 mm at both 532 nm and 1064 nm were measured. Conclusion: The results presented here are promising and corroborate that photoacoustic imaging can be applied as a diagnostic tool in caries research. New studies should focus on developing a clinical model of photoacoustic imaging applications in dentistry, including soft tissues. The use of inexpensive light-emitting diodes together with a miniaturized detector will make photoacoustic imaging systems more flexible, user-friendly, and technologically viable.

A Study on Flame Retardant Treatment on Bamboo Nonwoven Fabric and Manufacturing of Sandwich Structure Composites (대나무 섬유의 난연화 및 샌드위치 구조 복합재료 제조연구)

  • Lee, Dong-Woo;Prabhakar, M.N.;Song, Jung-Il
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.408-414
    • /
    • 2020
  • The present engineering sector focused on the sandwich composites and almost covered all engineering fields because of decent mechanical properties with a lightweight structure. It mainly consists of high strength fiber skin and porous structure core like corrugated, honeycomb, balsa wood, and foams which is playing a pivotal role in weight reduction. Recently researchers attention grabbed by Natural fiber sandwich composites due to biodegradability, renewable, low-cost, and environmentally friendly. However special focus is highly needed towards the flammability behavior of natural fibers used as reinforcement for composites. Herein, for the first time, the flame retardant natural fiber sandwich composite was fabricated by using flame retardant treated bamboo fabric and vinyl ester via the VARTM process. The impact of flame retardant treated bamboo fabric on mechanical and flame retardant properties were studied. The results concluded that the fabricated bamboo sandwich composites show structurally lightweight with significant mechanical strength and feasibility with respect to the flame.