• 제목/요약/키워드: frictional wear

검색결과 218건 처리시간 0.025초

드릴공구의 이종질화막상 DLC 희생층 적용을 통한 공구 수명 개선 연구 (A Study on the Improvement of Tool's Life by Applying DLC Sacrificial Layer on Nitride Hard Coated Drill Tools)

  • 강용진;김도현;장영준;김종국
    • 한국표면공학회지
    • /
    • 제53권6호
    • /
    • pp.271-279
    • /
    • 2020
  • Non-ferrous metals, widely used in the mechanical industry, are difficult to machine, particularly by drilling and tapping. Since non-ferrous metals have a strong tendency to adhere to the cutting tool, the tool life is greatly deteriorated. Diamond-like carbon (DLC) is one of the promising candidates to improve the performance and life of cutting tool due to their low frictional property. In this study, a sacrificial DLC layer is applied on the hard nitride coated drill tool to improve the durability. The DLC coatings are fabricated by controlling the acceleration voltage of the linear ion source in the range of 0.6~1.8 kV. As a result, the optimized hardness(20 GPa) and wear resistance(1.4 x 10-8 ㎣/N·m) were obtained at the 1.4 kV. Then, the optimized DLC coating is applied as an sacrificial layer on the hard nitride coating to evaluate the performance and life of cutting tool. The Vickers hardness of the composite coatings were similar to those of the nitride coatings (AlCrN, AlTiSiN), but the friction coefficients were significantly reduced to 0.13 compared to 0.63 of nitride coatings. The drilling test were performed on S55C plate using a drilling machine at rotation speed of 2,500 rpm and penetration rate of 0.25 m/rev. The result showed that the wear width of the composite coated drills were 200 % lower than those of the AlCrN, AlTiSiN coated drills. In addition, the cutting forces of the composite coated drills were 13 and 15 % lower than that of AlCrN, AlTiSiN coated drills, respectively, as it reduced the aluminum clogging. Finally, the application of the DLC sacrificial layer prevents initial chipping through its low friction property and improves drilling quality with efficient chip removal.

자동차 제동시 나타나는 마찰특성에 관한 연구(I. 고체 윤활제($Sb_2S_3$)와 연마제($ZrSiO_4$)의 함량에 따른 영향 (Effect of the Amount of a Lubricant and an Abrasive in the Friction Material on Friction Characteristics)

  • 장호
    • Tribology and Lubricants
    • /
    • 제13권1호
    • /
    • pp.34-41
    • /
    • 1997
  • Frictional behavior of three automotive friction materials (brake pads) containing different amounts of antimony trisulfide ($Sb_2S_3$) and zirconium silicate ($ZRSiO_4$) were investigated using a front brake system. The friction materials were tested on a brake dynamometer (dyno) with gray cast iron rotors. The dynamometer(dyno) test simulated the dragging of a ehicle maintaining 70 km/h and vehicle stops from 100 km/h using 20 different combinations of initial brake temperature (IBT) and input pressure (IP). The results showed a strong influence of the relative amount of $Sb_2S_3$ and $ZrSiO_4$ in friction materials on friction characteristics. Friction stability was improved with the higher concentration of $Sb_2S_3$ in the friction material. Torque variation during drag cycle was increased with an increase of the $ZrSiO_4$ concentration in the friction material. Average friction coefficient and the wear rate of the friction material increased by using more aggressive friction materials containing more $ZrSiO_4$ and less $Sb_2S_3$. Generation of the disk thickness variation (DTV) increased when friction materials with higher concentration of $ZrSiO_4$ were used Careful examination of DTV change showed that aggressiveness of the friction material played an important role in determining torque variation.

Study of Inhibition Characteristics of Slurry Additives in Copper CMP using Force Spectroscopy

  • Lee, Hyo-Sang;Philipossian Ara;Babu Suryadevara V.;Patri Udaya B.;Hong, Young-Ki;Economikos Laertis;Goldstein Michael
    • Transactions on Electrical and Electronic Materials
    • /
    • 제8권1호
    • /
    • pp.5-10
    • /
    • 2007
  • Using a reference slurry, ammonium dodecyl sulfate (ADS), an anionic and environmentally friendly surfactant, was investigated as an alternative to BTA for its inhibition and lubrication characteristics. Results demonstrated that the inhibition efficiency of ADS was superior to that of BTA. Coefficient of friction (COF) was the lowest when the slurry contained ADS. This suggested that adsorbed ADS on the surface provided lubricating action thereby reducing the wear between the contacting surfaces. Temperature results were consistent with the COF and removal rate data. ADS showed the lowest temperature rise again confirming the softening effect of the adsorbed surfactant layer and less energy dissipation due to friction. Spectral analysis of shear force showed that increasing the pad-wafer sliding velocity at constant wafer pressure shifted the high frequency spectral peaks to lower frequencies while increasing the variance of the frictional force. Addition of ADS reduced the fluctuating component of the shear force and the extent of the pre-existing stick-slip phenomena caused by the kinematics of the process and collision event between pad asperities with the wafer. By contrast, in the case of BTA, there were no such observed benefits but instead undesirable effects were seen at some polishing conditions. This work underscored the importance of real-time force spectroscopy in elucidating the adsorption, lubrication and inhibition of additives in slurries in CMP.

선재 인발공정에서 인발제품의 선경변화에 대한 연구 (Study on Dimensional Change in Wire Product During Wire-Drawing Process)

  • 문창선;김낙수
    • 대한기계학회논문집A
    • /
    • 제36권7호
    • /
    • pp.723-730
    • /
    • 2012
  • 상온의 인발공정에서 소재는 인발다이를 통과하면서 직경이 줄어들고 길이가 늘어난다. 인발다이와 소재가 접촉한 면에서의 압력과 미끄럼 운동에 의해 소재에는 탄성회복, 인발 다이에는 마찰과 마모가 생긴다. 또한, 소재의 변형 및 마찰열로 인해 소재와 다이의 온도가 상승하며 이로 인해 지정된 다이 내경으로 제품이 가공되기 어려우며 소재의 선경은 지정된 직경 또는 다이 내경과 다르게 된다. 본 논문에서는 다이의 온도분포를 고려하여 소재의 탄성회복, 다이의 탄성변형, 그리고 다이와 소재의 열변형이 인발제품의 선경변화에 미치는 영향을 정량적으로 분석하였다. 네 가지 요인 중에서 소재의 탄성회복의 영향이 선경변화량의 대부분을 차지함을 확인하였다. 선경변화에 영향을 주는 인자들을 고려하여 지정된 치수와 차이를 주지 않는 초기 다이를 설계하였고, 설계된 초기 다이를 이용하여 지정된 치수의 인발제품을 얻을 수 있었다.

MgO 표면을 diamond stylus로 마모시킬 때 발생되는 전자와 광자 방출에 관한 연구

  • 황도진;김종민;김명원
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1999년도 제17회 학술발표회 논문개요집
    • /
    • pp.198-198
    • /
    • 1999
  • 본 연구는 진공상태에서 단단한 물질로 된 diamond stylus로 단결정 MgO 표면에 마모(abrasion)가 할 때 발생되는 Photon emission(PHE), electron emission(EE), 마찰력을 시간의 함수로 동시에 측정하였다. 마모가 일어나는 동안 PHE 와 EE을 시간의 함수로 측정하면 마찰력 신호(signal)와 일치하지 않고 강한 fluctuation을 보여주고 있다. 마모를 가할 때 PHE와 EE의 signal은 wear 실험이 지속되는 동안은 force signal과 관계가 있다. 그러나 변형과 마찰력의 시간의 함수에는 관계하지 않음을 알 수 있다. 본 실험에서 사용된 실험장치는 PhE, EE, frictional force을 동시에 실할 수 있는 장치이다. 광자방출 실험은 공기 중에서도 할 수 있으나 전자방출은 진공에서 얻을 수 있으므로 1$\times$10-4pa하에서 실험하였다. 전자방출은 Channel electron multiplier(bias-100V)로 검출하였고, 광자 에너지는 Gencom photomultiplier를 사용하여 180~600nm의 photon을 측정하였다. 마모는 탐색기에 관계되는 접촉점의 움직임에 관계없이 실험하였다. 시료의 처리과정과 load속도에 따른 PhE, EE, data의 방출은 시료의 표면 상태에 따라 좌우되었다. cleaved 표면은 polished 표면보다 강한 emission을 나타내었다. 이것은 마찰이 표면 상태에 의존됨을 볼 수 있었다. 속도에 따라 emission이 증가하다가 ~0.5m/s이상에서 포화상태에 도달하였다. emission 측정은 열처리한 시료와 열처리 안한 시료를 비교하였다. 발광도(luminescence)는 주로 변형(deformation)에 의해 생겼으며, 전자 방출은 벽개(fracture)에 의해 발생됨을 알 수 있었다. 측정한 3개의 signal을 시간에 따라 분석하면 stick-slip-like 현상을 볼 수 있었다. 이것으로 보아 stick은 변형에 의해 생기고 ms 후에 벽개 현상이 발생됨을 볼 수 있다. 이러한 방출 현상은 마모시 일어나는 세라믹의 급격한 벽개 과정을 이해하는 데 많은 도움을 주었다. PhE와 EE signal은 다이아몬드 stylus로 단결정 MgO 기판에 마모를 가할 때 ms 단위로 검출 할 수 있었다. 방출과 마찰력은 표면조건, load, stylus velocity에 따라 변하였다. 마찰력, PhE, EE의 시간에 따른 분석에서 PhE는 변형 과정에 민감하며, EE는 stylus velocity에 의존하였다. 본 연구의 MgO 마찰 실험에서 표면 변화에 대한 정보를 얻을 수 있었다.

  • PDF

자동차 브레이크 마찰재용 비침상형 육티탄산칼륨의 합성 연구 (Synthesis of Potassium Hexatitanate with Non-Fibrous Shape as a Raw Material for Friction Material in Brake System)

  • 이정주;이나리;피재환;김종영;김정주
    • 한국재료학회지
    • /
    • 제27권3호
    • /
    • pp.132-136
    • /
    • 2017
  • We synthesized potassium hexatitanate, ($K_2Ti_6O_{13}$, PT6), with a non-fibrous shape, by acid leaching and subsequent thermal treatment of potassium tetratitanate ($K_2Ti_4O_9$, PT4), with layered crystal structure. By controlling nucleation and growth of PT4 crystals, we obtained splinter-type crystals of PT6 with increased width and reduced thickness. The optimal holding temperature for the layered PT4 was found to be ${\sim}920^{\circ}C$. The length and width of the PT4 crystals were increased when the nucleation and growth time were increased. After a proton exchange reaction using aqueous 0.3 M HCl solution, and subsequent heat treatment at $850^{\circ}C$, the PT4 crystal transformed into splinter-type PT6 crystals. The frictional characteristics of the friction materials show that as the particle size of PT6 increases, the coefficient of friction (COF) and wear amounts of both the friction materials and counter disc increase.

차륜 답면의 열손상에 대한 잔류응력 평가 (Evaluation of Residual Stress for Thermal Damage of Railway Wheel Tread)

  • 권석진;서정원;이동형;함영삼
    • 한국정밀공학회지
    • /
    • 제28권5호
    • /
    • pp.537-542
    • /
    • 2011
  • The thermo-mechanical interaction between brake block and wheel tread during braking has been found to cause thermal crack on the wheel tread. Due to thermal expansion of the rim material, the thermal cracks will protrude from the wheel tread and be more exposed to wear during the wheel/block contact than the rest of the tread surface. The wheel rim is in residual compression stress when is new. After service running, the region in the tread has reversed to tension. This condition can lead to the formation and growth of thermal cracks in the rim which can ultimately lead to premature failure of wheel. In the present paper, the thermal cracks of railway wheel, one of severe damages on the wheel tread, were evaluated to understand the safety of railway wheel in running condition. The residual stresses for damaged wheel which are applied to tread brake are investigated. Mainly X-ray diffusion method is used. Under the condition of concurrent loading of continuous rolling contact with rails and cyclic frictional heat from brake blocks, the reduction of residual stress is found to correlate well with the thermal crack initiation.

수정된 후방 플로팅 링 실을 적용한 7톤급 터보펌프 산화제 펌프의 진동 및 압력 측정 (Measurements of Vibration and Pressure of an Oxidizer Pump for a 7-tonf Turbopump with a Modified Rear Floating Ring Seal)

  • 배준환;곽현덕;최창호;최종수
    • Tribology and Lubricants
    • /
    • 제36권5호
    • /
    • pp.253-261
    • /
    • 2020
  • In this paper, we present an experimental investigation of the frequency characteristics and a visual inspection of an oxidizer pump with a modified rear-floating ring seal for a 7-tonf turbopump. An oxidizer pump typically operates at high rotational speeds and under cryogenic conditions. Despite its low hydraulic efficiency, the floating ring seal is frequently employed as a leakage control solution for turbomachinery because it effectively reduces abrasion by friction. When the oxidizer pump starts up, the floating ring moves excursively but locks up stably against the pump casing when the contact pressure increases. The compressive force on the floating ring depends on the hydrodynamic forces induced by the flow through the floating ring. This force is controlled by the nose position of the floating ring. Based on a validation test for a 7-tonf turbopump with two types of floating rings, we concluded that the floating ring with a small diameter nose can move easily with a low contact pressure in the cooling path. This leads to instability of the pressure fluctuation around the floating ring. In contrast, a floating ring with a large diameter nose has a high contact pressure and attaches strongly to the casing, which causes wear and frictional oxidation between the contact surfaces of the impeller and the floating ring.

FLUID-STRUCTURE INTERACTION IN A U-TUBE WITH SURFACE ROUGHNESS AND PRESSURE DROP

  • Gim, Gyun-Ho;Chang, Se-Myoung;Lee, Sinyoung;Jang, Gangwon
    • Nuclear Engineering and Technology
    • /
    • 제46권5호
    • /
    • pp.633-640
    • /
    • 2014
  • In this research, the surface roughness affecting the pressure drop in a pipe used as the steam generator of a PWR was studied. Based on the CFD (Computational Fluid Dynamics) technique using a commercial code named ANSYS-FLUENT, a straight pipe was modeled to obtain the Darcy frictional coefficient, changed with a range of various surface roughness ratios as well as Reynolds numbers. The result is validated by the comparison with a Moody chart to set the appropriate size of grids at the wall for the correct consideration of surface roughness. The pressure drop in a full-scale U-shaped pipe is measured with the same code, correlated with the surface roughness ratio. In the next stage, we studied a reduced scale model of a U-shaped heat pipe with experiment and analysis of the investigation into fluid-structure interaction (FSI). The material of the pipe was cut from the real heat pipe of a material named Inconel 690 alloy, now used in steam generators. The accelerations at the fixed stations on the outer surface of the pipe model are measured in the series of time history, and Fourier transformed to the frequency domain. The natural frequency of three leading modes were traced from the FFT data, and compared with the result of a numerical analysis for unsteady, incompressible flow. The corresponding mode shapes and maximum displacement are obtained numerically from the FSI simulation with the coupling of the commercial codes, ANSYS-FLUENT and TRANSIENT_STRUCTURAL. The primary frequencies for the model system consist of three parts: structural vibration, BPF(blade pass frequency) of pump, and fluid-structure interaction.

DETORQUE FORCE OF TiN-COATED ABUTMENT SCREW WITH VARIOUS COATING THICKNESS AFTER REPEATED CLOSING AND OPENING

  • Kim, Han-Su;Kim, Hee-Jung;Chung, Chae-Heon
    • 대한치과보철학회지
    • /
    • 제45권6호
    • /
    • pp.769-779
    • /
    • 2007
  • Statement of problem. When TiN coating is applied to the abutment screw, occurrence of greater preload and prevention of the screw loosening could be expected due to decrease of frictional resistance. However, the proper thickness of TiN coating on abutment screw has not been yet reported. Purpose. The purpose of this study is to find out the appropriate TiN coating thickness by evaluating the detorque force and the surface change of titanium abutment screw with various TiN coating thickness. Material and methods. 1. Material Thirty five non-coated abutment screws were prepared for TiN coating. TiN coatings were prepared by Arc ion plating method. Depending on the coating deposition time(CDT), experimental groups were divided into 6 groups(CDT 30min, 60min, 90min, 120min, 150min, 180min) and those of 1 group was not coated as a control group. Each group was made up of 5 abutment screws. 2. Methods FE-SEM(Field Emission Scanning Electron Microscoper) and EDX(Energy Dispersive X-ray Spectroscopy) were used to observe the surface of the abutment screw. Electric scales was used to measure the weight of the abutment screw after the repeated closing and opening of 10 trials. Detorque force was measured with digital torque gauge, at each trial. Results. 1. As the coating deposition time increased, the surface became more consistent and smooth. 2. As for the abutment screws that were TiN coated for more than 60 minutes, no surface change was found after the repeated closing and opening. 3. The TiN coated abutment screws showed less weight change than the non-coated abutment screws. 4. The TiN coated abutment screws showed higher mean detorque force than the noncoated abutment screws. 5. The abutment screw coated for 60 minutes showed the highest mean detorque force. Conclusion. The coating layer of proper thickness is demanded to obtain consistent and smooth coating surface, resistance to wear, and increased detorque force of the abutment screw. In conclusion, the coating deposition time of 60 minutes indicated improved mechanical property, when TiN coating was conducted on titanium abutment screw.