• Title/Summary/Keyword: frictional element

Search Result 210, Processing Time 0.022 seconds

Investigation of the Tribological Effects of the Auxiliary Inner Ring for Piston Shoes at Low Speeds (저속에서 피스톤 슈 내부 보조 링의 윤활 효과 분석)

  • Lee, S.L.;Kim, J.H.;Hong, Y.S.;Kim, B.K.;Moon, J.S.;Moon, J.H.
    • Journal of Drive and Control
    • /
    • v.12 no.2
    • /
    • pp.21-26
    • /
    • 2015
  • In order to design a swash plate type pump for electro-hydrostatic actuators the performance of the hydrostatic piston shoe bearings in the low speed range needs to be examined, since the pump operates frequently at low speeds, compensating for position control errors as a control element. As a common practice, piston shoes are equipped with inner rings as an auxiliary element to enhance their tribological performance. In this paper, the effects of the inner rings of the piston shoes on the frictional loss and leakage flow rate were investigated, where three piston shoe models, with different inner ring shapes and different inlet orifice sizes, were integrated. The test results showed that a large inner ring and small inlet orifice were advantageous for reducing both the frictional loss and leakage flow rate; this could also be confirmed by computational analyses.

Seismic Performance Evaluation of Vibration Attenuation Wireway-Pulley System Using the FE Analysis (유한요소해석을 통한 진동 감쇠형 와이어웨이시스템의 내진성능 검증)

  • Tran, V. Han;Jin, Su Min;Kim, Sung Chan;Cha, Ji Hyun;Shin, Jiuk;Lee, Kihak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.4
    • /
    • pp.185-192
    • /
    • 2020
  • A new lighting support structure composing of two-way wires and pulley, a pulley-type wireway system, was developed to improve the seismic performance of a ceiling type lighting equipment. This study verifies the seismic performance of the pulley-type wireway system using a numerical approach. A theoretical model fitted to the physical features of the newly-developed system was proposed, and it was utilized to compute a frictional coefficient between the wire and pulley sections under tension forces. The frictional coefficient was implemented to a finite element model representing the pulley-type wireway system. Using the numerical model, the seismic responses of the pulley-type wireway system were compared to those of the existing lighting support structure, a one-way wire system. The addition of the pulley component resulted in the increasement of energy absorption capacity as well as friction effect and showed in significant reduction in maximum displacement and oscillation after the peak responses. Thus, the newly-developed wireway system can minimize earthquake-induced vibration and damage on electric equipment.

Sensitivity of Dimensional Changes to Interfacial Friction over the Definite Range of Friction Factor in Ring Compression Test (링 압축시험에서 마찰인자 구간별 치수 변화의 민감도)

  • Lim, J.Y.;Noh, J.H.;Hwang, B.B.
    • Transactions of Materials Processing
    • /
    • v.19 no.8
    • /
    • pp.494-501
    • /
    • 2010
  • The main objective of this study is to examine the sensitivity of calibration curves of FEA of ring compression test to frictional shear factor. Ring compression test has been investigated by measuring dimensional changes at different positions of ring specimen and they include the changes in internal diameter at the middle and top section of the specimen, outer diameter at the middle and top section, surface expansion at the top surface, respectively. Initial ring geometries employed in analysis maintain a fixed ratio of 6 : 3 : 2, i.e. outer diameter : inner diameter : thickness of the ring specimen, which is generally known as 'standard' specimen. A rigid plastic material for different work-hardening characteristics has been modeled for simulations using rigid-plastic finite element code. Analyses have been performed within a definite range of friction as well as over whole range of friction to show different sensitivities to the interfacial friction for different ranges of friction. The results of investigation in this study have been summarized in terms of a dimensionless gradient. It has been known from the results that the dimensional changes at different positions of ring specimen show different linearity and sensitivity to the frictional condition on the contact surface.

Application of frictional sliding fuse in infilled frames, fuse adjustment and influencing parameters

  • Mohammadi-Gh, M.;Akrami, V.
    • Structural Engineering and Mechanics
    • /
    • v.36 no.6
    • /
    • pp.715-727
    • /
    • 2010
  • An experimental investigation is conducted here to study the effects of applying frictional sliding fuses (FSF) in concrete infilled steel frames. Firstly, the influences of some parameters on the behavior of the sliding fuse are studied: Methods of adjusting the FSF for a certain sliding strength are explained and influences of time duration, welding and corrosion are investigated as well. Based on the results, time duration does not significantly affect the FSF, however influences of welding and corrosion of the constitutive plates are substantial. Then, the results of testing two 1/3 scale single-storey single-bay concrete infilled steel frames having FSF are presented. The specimens were similar, except for different regulations of their fuses, tested by displacement controlled cyclic loading. The results demonstrate that applying FSF improves infill behaviors in both perpendicular directions. The infilled frames with FSF have more appropriate hysteresis cycles, higher ductility, much lower deteriorations in strength and stiffness in comparison with regular ones. Consequently, the infills, provided with FSF, can be regarded as an engineered element, however, special consideration should be taken into the affecting parameters of their fuses.

Finite Element Simulation of Axisymmetric Tube Hydroforming Processes (축대칭 튜브 하이드로포밍 공정의 유한요소 시뮬레이션)

  • Kim Y. S.;Keum Y. T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.58-61
    • /
    • 2001
  • An implicit finite element formulation for axisymmetric tube hydroforming is investigated. In order to describe normal anisotropy of the tube, Hill's non-quadratic yield function is employed. The frictional contact between die and tube and frictionless contact between tube and fluid are considered using the mesh-normal vector computed from finite element mesh of the tube. In order to verify the validity of the developed finite element formulation, the axisymmetric tube bulge test is simulated and simulation results are compared with experimental measurements. In the axisymmetric tube hydroforming process, an optimal hydraulic curve is pursued by performing the simulation with various internal pressures and axial forces.

  • PDF

Finite Element Simulation of Axisymmeric Tube Hydroforming Processes (축대칭 튜브 하이드로포밍 공정의 유한요소 시뮬레이션)

  • 김용석;금영탁
    • Transactions of Materials Processing
    • /
    • v.11 no.1
    • /
    • pp.75-83
    • /
    • 2002
  • Recently, the hydroforming process is widely applied to the automotive industry and rapidly spreaded to other industries. In this paper, An implicit finite element formulation for simulating axisymmetric tube hydroforming processes is performed. In order to describe normal anisotropy of the tube, Hill's non-quadratic yield function is employed. The frictional contact between die and tube and the frictionless contact between tube and fluid are considered using the mesh-normal vectors computed from the finite element mesh of the tube. The complete set of the governing relations comprising equilibrium and interfacial equations is linearized for Newton-Raphson procedure. In order to verify the validity of the developed finite element formulation, the axisymmetric tube bulge test is simulated and the simulation results are compared with experimental measurements. In a simulation of stepped circular tube hydroforming processes, an optimal hydraulic pressure curve is pursued by considering simultaneously internal pressures and axial forces.

Using multiple point constraints in finite element analysis of two dimensional contact problems

  • Liu, C.H.;Cheng, I.;Tsai, An-Chi;Wang, Lo-Jung;Hsu, J.Y.
    • Structural Engineering and Mechanics
    • /
    • v.36 no.1
    • /
    • pp.95-110
    • /
    • 2010
  • Two-dimensional elastic contact problems, including normal, tangential, and rolling contacts, are treated with the finite element method in this study. Stress boundary conditions and kinematic conditions are transformed into multiple point constraints for nodal displacements in the finite element method. Upon imposing these constraints into the finite element system equations, the calculated nodal stresses and nodal displacements satisfy stress and displacement contact conditions exactly. Frictional and frictionless contacts between elastically identical as well as elastically dissimilar materials are treated in this study. The contact lengths, sizes of slip and stick regions, the normal and the shear stresses can be found.

Finite Element Simulation of Axisymmetric Sheet Hydroforming Processes (축대칭 박판 액압 성형 공정의 유한요소 시뮬레이션)

  • 구본영;김용석;금영탁
    • Transactions of Materials Processing
    • /
    • v.9 no.6
    • /
    • pp.590-597
    • /
    • 2000
  • A finite element formulation lot the simulation of axisymmetric sheet hydroforming is proposed, and an implicit program is coded. In order to describe normal anisotropy of steel sheet, Hill's non-quadratic yield function (Hill, 1979) is employed. Frictional contacts among sheet surface, rigid tool surface, and flexible hydrostatic pressure are considered using mesh normal vectors based on finite element of the sheet. Applied hydraulic pressure is also considered as a function of forming rate and time and treated as an external loading. The complete set of the governing relations comprising equilibrium and interfacial equations is approximately linearized for Newton-Raphson algorithm. In order to verify the validity of the developed finite element formulation, the axisymmetric bulge test is simulated. Simulation results are compared with other FEM results and experimental measurements and showed good agreements. In axisymmetric hydroforming processes of a disk cover, formability changes are observed according to the hydraulic pressure curve changes.

  • PDF

Transient Heat Transfer Analysis of Brake Drum Shape (브레이크 드럼의 형상에 따른 과도 열전달 해석)

  • Kim, Yang-Sul;An, Su-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.8
    • /
    • pp.65-71
    • /
    • 2008
  • This paper presents a transient heat transfer analysis of a drum brake shape. The transient heat transfer analysis of automotive drum brakes with frictional contact is performed by using the finite element method. The drum brake type studied in the page is the internally expanding one in which two shoes fitted externally with frictional material are forced outward against surface a rotating drum on the wheel unit. In this case, the braking power is produced by the friction force between a drum and a lining, and is converted into heat. The brake drum has constant material properties. The air inside the drum has temperature-dependent thermal conductivity and enthalpy. Radiation effects are ignored. The result explains the reason why hair crack and cause of drum failure occur. The temperature of drum is in proportion to the drum thickness and nonlinear changes at every points of drum. It's necessary for the decrease of the drum temperature to make the air inside drum flow.

A Study on Hot Precision Forging Processes for Spline Teethof a Counter Shaft Gear (카운터샤프트 기어의 스플라인 치형 정밀성형을 위한 열간단조 공정에 관한 연구)

  • Kim, H.P.;Kim, H.S.;Kim, Y.J.
    • Design & Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.6-11
    • /
    • 2012
  • A counter shaft gear is an important part in the transmission system of vehicle. Its shape is relatively complicated and should meets high strength. Traditionally the counter shaft gear has been manufactured as follows; a spline body is firstly machined for teeth and then attached to the main gear body by frictional welding, and finally is finished by grinding. Therefore it is necessary to develop a new manufacturing technology eliminating both frictional welding and grinding processes. In this study, a new hot forging process was proposed and designed so that the spline body with teeth and main gear body are formed as one body. Finite element simulations and experimental works were peformed for design of forging processes to get the quality final precision-forged product. Consequently the most suitable blocker process could be obtained.

  • PDF