• Title/Summary/Keyword: frictional Condition

검색결과 225건 처리시간 0.021초

마찰에너지율을 이용한 타이어 제동거리 예측 (Braking Distance Estimation using Frictional Energy Rate)

  • 전도형;최주형;조진래;김기전;우종식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.519-524
    • /
    • 2004
  • This study is concerned with the braking distance estimation using frictional energy rate. First, steady state rolling analysis is performed, and using this result, the braking distance is estimated. Dynamic rolling analysis during entire braking time period is impratical, so that this study divides the vehicle velocity by 10km/h to reduce the analysis time. The multiplication of the slip rate and the shear stress provides the frictional energy rate. Using frictional energy rate, total braking distance is estimated, In addition, ABS(Anti-lock Brake System) is considered, and two type of slip ratios are compared, One is 15% slip ratio for the ABS condition, and the other is 100% slip ratio which leads lo the almost same braking distance as the elementary kinematic theory. A slip ratio is controlled by angular velocity in ABAQUS/Explicit, A 15% slip ratio gives the real vehicle's braking distance when the frictional energy occurred al disk pad is included. Disk pad's frictional energy rate is calculated by the theoretical approach.

  • PDF

A Method to Simulate Frictional Heating at Defects in Ultrasonic Infrared Thermography

  • Choi, Wonjae;Choi, Manyong;Park, Jeonghak
    • 비파괴검사학회지
    • /
    • 제35권6호
    • /
    • pp.407-413
    • /
    • 2015
  • Ultrasonic infrared thermography is an active thermography methods. In this method, mechanical energy is introduced to a structure, it is converted into heat energy at the defects, and an infrared camera detects the heat for inspection. The heat generation mechanisms are dependent on many factors such as structure characteristics, defect type, excitation method and contact condition, which make it difficult to predict heat distribution in ultrasonic infrared thermography. In this paper, a method to simulate frictional heating, known to be one of the main heat generation mechanisms at the closed defects in metal structures, is proposed for ultrasonic infrared thermography. This method uses linear vibration analysis results without considering the contact boundary condition at the defect so that it is intuitive and simple to implement. Its advantages and disadvantages are also discussed. The simulation results show good agreement with the modal analysis and experiment result.

FFT해석을 이용한 기하학적 접촉조건에 따른 마찰거동예측 (Prediction of Frictional behavior according to geometrical contact condition using FFT-based analysis)

  • 성인하;이형석;김대은
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2001년도 제34회 추계학술대회 개최
    • /
    • pp.13-18
    • /
    • 2001
  • In this paper, FFT(Fast Fourier Transform) analysis of friction was suggested as a method to interpret the contact conditions. Micro-grooves with various dimensions were fabricated on the silicon surface to investigate the frictional behavior with respect to the change in geometrical contact condition. Frictional forces between micro-grooved surfaces and spheres modeled as surface asperities were measured using a micro-tribotester which was built inside a SEM(Scanning Electron Microscope). The experimental results show that the relative dimensions and distributions of contact asperities between two surfaces can be predicted by the power spectrum and the main frequency in FFT-based analysis of friction coefficient. Also, it was shown that the friction coefficient for multi-asperities was the result of the superposition of that for each asperity.

  • PDF

접착형 $MoS_2$고체윤활피막이 코팅된 감속기의 동력전달효율과 소음 특성에 관한 실험적 고찰 (An Experimental Study on the Power Transmission Efficiency and Frictional Noise of $MoS_2$-Bonded-Film Coated Reduction Gears)

  • 윤의성;공호성;한홍구;오재응
    • Tribology and Lubricants
    • /
    • 제12권3호
    • /
    • pp.107-114
    • /
    • 1996
  • MoS$_{2}$ bonded film was applied to reduction gears, and its lubricating properties were experimentally evaluated in terms of the power transmission efficiency and the frictional noise with a dynamo-typed gear test rig. Tests were performed in both oil lubrication and dry condition where the rotating velocity and loading torque were varied. In dry condition, MoS$_{2}$ bonded films effected the power transmission efficiency to increase about 5%, and the frictional noise level to decrease about 6 dB under the test operating conditions. It well proved that MoS$_{2}$ bonded films were a very effective solid lubricant for reduction gears. In oil lubricating conditions, the frictional properties of the coated gears were mainly governed by the lubricating oil, and lubricating effects of MoS2 bonded films were not evident. The result suggested that lubricating effect of MoS$_{2}$ bonded films would be limited to prevent a damage of reduction gears in the initial run when they were used in oil lubrication conditions.

축대칭 변형체의 마찰 접촉문제에 관한 유한요소 해석 (Finite Element Analysis for Frictional Contact Problems of Axisymmetric Deforming Bodies)

  • 장동환;조승한;황병복
    • 소성∙가공
    • /
    • 제12권1호
    • /
    • pp.26-33
    • /
    • 2003
  • This paper is concerned with the numerical analysis of frictional contact problems in axisymmetric bodies using the rigid-plastic finite element method. A contact finite element method, based on a penalty function, are derived from variational formulations. The contact boundary condition between two deformable bodies is prescribed by the proposed algorithm. The program which can handle frictional contact problem is developed by using pre-existing rigid-plastic finite element code. Some examples used in this paper illustrate the effectiveness of the proposed formulations and algorithms. Efforts focus on the deformation patterns, contact force, and velocity gradient through the various simulations.

체적소성가공에서 마찰법칙이 유한요소해석 결과에 미치는 영향에 관한 고찰 (Consideration on Frictional Laws and their Effect on Finite Element Solutions in Bulk Metal Forming)

  • 전만수;문호근;황상무
    • 한국정밀공학회지
    • /
    • 제13권2호
    • /
    • pp.102-109
    • /
    • 1996
  • Effects of frictional laws on finite element solutions in metal forming were investigated in this paper. A rigid-viscoplastic finite element formulation was given with emphasis on the frictional laws. The Coulomb friction and the constant shear friction laws were compared through finite element analyses of compression of rings and cylinders with different aspect ratios, ring-gear forging, multi-stage cold extrusion and hot strip rolling under the isothermal condition. It has been shown that two laws may yield quite different results when the aspect ratio of a process and the fractional contact region are large.

  • PDF

소성변형에 의한 냉연 강판의 표면 거칠기 변화가 마찰 특성에 미치는 영향 (Influence of Surface Roughness Change on Frictional Behavior of Sheet Steel for Each Forming Mode)

  • 한수식
    • 소성∙가공
    • /
    • 제19권4호
    • /
    • pp.236-241
    • /
    • 2010
  • The frictional behavior of bare steel sheet highly depends on surface roughness. It was investigated that the change of surface roughness of bare steel sheet due to deformation for each forming mode. The flat type friction test was done to check the effect of surface roughness change on frictional characteristics of bare steel sheet. As increasing the deformation, the Ra value was increased at stretching forming mode and drawing forming mode, however the change of Pc showed different trends. The Pc was decreased as increasing stretch deformation but increased at compression deformation. At drawing forming mode, the friction coefficient was increased as deformation was increased after initial big drop with drawing oil. As deformation was increased, the friction coefficient was decreased with drawing oil at stretching forming mode. The results show that the deformation changes the surface roughness and frictional characteristics of steel sheet but the effect depends on the forming mode.

윤활유가 충분한 배럴형 피스톤-링의 마찰모드 (The Frictional Modes of Barrel Shaped Piston Ring under Flooded Lubrication)

  • 조성우;최상민;배충식
    • 한국자동차공학회논문집
    • /
    • 제8권3호
    • /
    • pp.56-64
    • /
    • 2000
  • A friction force measurement system using the floating liner method was developed to study the frictional behavior of piston rings. The measurement system was carefully designed to control the effect of the piston secondary motion and the temperature of cylinder wall and oil. The friction force between the barrel shaped piston ring and the cylinder liner, was measured under the condition of flooded oil supply. The measured friction forces were classified into five frictional modes with regard to the combination of predominant lubrication regimes(boundary, mixed and hydrodynamic lubrication) and stroke regions(midstroke and dead centers). The modes could be identified on the Stribeck diagram of the friction coefficients and the dimensionless number of ㎼/p, where the friction coefficients are evaluated at near the midstroke and dead centers.

  • PDF

접촉 마찰을 고려한 다중 로봇 시스템의 조작도 해석 (Dynamic Manipulability for Cooperating Multiple Robot Systems with Frictional Contacts)

  • 변재민;이지홍
    • 전자공학회논문지SC
    • /
    • 제43권5호
    • /
    • pp.10-18
    • /
    • 2006
  • 본 논문에서는 다중 로봇 시스템에서 물체와 로봇 팔끝 간에 접촉 마찰이 존재할 때 이 로봇 시스템의 조작도를 해석하는 새로운 방법을 제안한다. 로봇이 물체를 떨어뜨리지 않고 잡고 있으려면, 로봇이 물체에 가하는 힘 벡터가 friction cone 내부에 존재 해야만 한다. 이러한 friction cone 내부를 나타내는 식은 일반적으로 비선형 형태로 되어 있기 때문에 기존의 조작도 분석 방법에 이 식을 구속 조건으로 적용하기가 쉽지 않다. 따라서 본 논문에서는 이러한 friction cone 내부를 다각뿔로 근사함으로써 선형적인 구속 조건으로 표현하였다. 또한 선행 연구에서 찾지 못했던 부분을 새롭게 찾아내었다. 그리고 다중 로봇 시스템에 조작도를 나타내는 물체 중심의 가속도를 구하기 위해서, 먼저 선형계획법을 통해서 허용 가능한 토크의 영역을 구하였다. 이 토크의 영역을 선형 변환을 통해 최종적으로 물체의 최대 가속도의 영역을 구하였다. 본 방법의 타당성을 입증하기 위해서 두 대로 구성 된 다중 로봇 시스템과 PUMA560 로봇 시스템에 적용하였다.

스러스트 볼 베어링이 적용된 왕복동형 압축기의 마찰손실 해석 (Frictional Loss Analysis of a Reciprocating Compressor with Thrust Ball Bearing)

  • 김태종
    • Tribology and Lubricants
    • /
    • 제27권2호
    • /
    • pp.101-108
    • /
    • 2011
  • In this paper, a study on the frictional losses and dynamic behaviors of a reciprocating compression mechanism used in small refrigeration compressor is performed. In the problem formulation of the compressor dynamics, the viscous frictional force between piston and cylinder wall is considered in order to determine the coupled dynamic behaviors of piston and crankshaft supported on a thrust ball bearing. The solutions of the equations of motion of the reciprocating mechanism along with the time dependent Reynolds equations for the lubricating film between piston and cylinder wall and lubricant films of the journal bearings are obtained simultaneously. The hydrodynamic forces of journal bearings are calculated using finite bearing model and G$\hat{u}$m-bel boundary condition. And, a Newton-Raphson procedure was employed in solving the nonlinear equations of piston and crankshaft with a thrust ball bearing. The results explored the effects of design parameters on the frictional losses and dynamic stability of the compression mechanism.