• Title/Summary/Keyword: friction law

Search Result 182, Processing Time 0.034 seconds

Diffusion of Probe Molecule in Small Liquid n-Alkanes: A Molecular Dynamics Simulation Study

  • Yoo, Choong-Do;Kim, Soon-Chul;Lee, Song-Hi
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.8
    • /
    • pp.1554-1560
    • /
    • 2008
  • The probe diffusion and friction constants of methyl yellow (MY) in liquid n-alkanes of increasing chain length were calculated by equilibrium molecular dynamics (MD) simulations at temperatures of 318, 418, 518 and 618 K. Lennard-Jones particles with masses of 225 and 114 g/mol are modeled for MY. We observed that the diffusion constant of the probe molecule follows a power law dependence on the molecular weight of nalkanes, DMY${\sim}M^{-\gamma}$ well. As the molecular weight of n-alkanes increases, the exponent $\gamma$ shows sharp transitions near n-dotriacontane ($C_{32}$) for the large probe molecule (MY2) at low temperatures of 318 and 418 K. For the small probe molecule (MY1) $D_{MY1}$ in $C_{12}$ to C80 at all the temperatures are always larger than Dself of n-alkanes and longer chain n-alkanes offer a reduced friction relative to the shorter chain n-alkanes, but this reduction in the microscopic friction for MY1 is not large enough to cause a transition in the power law exponent in the log-log plot of DMY1 vs M of n-alkane. For the large probe molecule (MY2) at high temperatures, the situation is very similar to that for MY1. At low temperatures and at low molecular weights of n-alkanes, $D_{MY2}$ are smaller than $D_{self}$ of n-alkanes due to the relatively large molecular size of MY2, and MY2 experiences the full shear viscosity of the medium. As the molecular weight of n-alkane increases, $D_{self}$ of n-alkanes decreases much faster than $D_{MY2}$ and at the higher molecular weights of n-alkane, MY2 diffuses faster than the solvent fluctuations. Therefore there is a large reduction of friction in longer chains compared to the shorter chains, which enhances the diffusion of MY2. The calculated friction constants of MY1 and MY2 in liquid n-alkanes supported these observations. We deem that this is the origin of the so-called“solventoligomer”transition.

Robust Adaptive Control of Autonomous Robot Systems with Dynamic Friction Perturbation and Its Stability Analysis (동적마찰 섭동을 갖는 자율이동 로봇 시스템의 강인적응제어 및 안정성 해석)

  • Cho, Hyun-Cheol;Lee, Kwon-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.1
    • /
    • pp.72-81
    • /
    • 2009
  • This paper presents a robust adaptive control method using model reference control strategy against autonomous robot systems with random friction nature. We approximate a nonlinear robot system model by means of a feedback linearization approach to derive nominal control law. We construct a Least Square (LS) based observer to estimate friction dynamics online and then represent a perturbed system model with respect to approximation error between an actual friction and its estimation. Model reference based control design is achieved to implement an auxiliary control in order for reducing control error in practice due to system perturbation. Additionally, we conduct theoretical study to demonstrate stability of the perturbed system model through Lyapunov theory. Numerical simulation is carried out for evaluating the proposed control methodology and demonstrating its superiority by comparing it to a traditional nominal control method.

Adaptive Discrete Time Sliding-Mode Tracking Control of a Proportional Control Valve-Hydraulic System in the presence of friction (비선형 마찰특성을 고려한 비례제어밸브·유압실린더계의 적응 이산시간 슬라이딩모드 추적제어)

  • Yu, Hwan-Shin;Park, Hyung-Bae
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.5
    • /
    • pp.756-762
    • /
    • 2009
  • As nonlinear friction, stick-slip friction in hydraulic actuators are a problem for accuracy and repeatability. Therefore friction compensation has been approached through various control algorithms. A Adaptive discrete time sliding mode tracking controller has been applied in order to compensate the nonlinear friction characteristics in a hydraulic Actuator. Based on the diophantine equation, a new discrete time sliding function is defined and utilized for the control law which includes a friction and modeling error. Robustness is increased by using both a projection algorithm and a sliding function-based nonlinear feedforward. From the results of simulation and experiment good tracking performance is achieved.

  • PDF

Simple Design of Seepage Flow (침투류 간편설계)

  • Yu, Dong-Hun;Eom, Ho-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.1
    • /
    • pp.31-40
    • /
    • 1999
  • After investigating the basic problems of seepage flow, the friction factor equation of power form was developed for solving them. The use of power law for the estimation on friction factor enabled to develop the explicit form of equations without any iteration process being related to various non-dimensional physical numbers. For the derivation of friction factor equations, the existing data were re-analyzed, and the simple method of seepage flow design was devised with the power law equations for the estimation of slope, discharge, and diameter.

  • PDF

Modeling and Analysis of a Friction Drive Type Precise Actuator (마찰구동형 액추에이터의 동특성 모델 및 거동 해석)

  • Kim, Sang-Chae;Kim, Soo-Hyeon;Park, Kyi-Hwan;Kwak, Yun-Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.5
    • /
    • pp.1419-1425
    • /
    • 1996
  • In this work, a precies actuator which is capable of high positioning accuracy is developed. For estimation the dynamic behavior of the actuator, system modeling is performed by employing a stick-slip frection law. Dynamic characteristics over various types of driving input signals and vibraiton loci of the driving tip are examined by experiments. Phase differences between the input signals are applied, and the dynamic behavior of slider is investigated. From the simulation and experimental results, it is observed that the dynamic behaviors from the simulation results agree fairly well to those of the experimental results. Thisindicates that the model developed in this work is applicable to other precision mechanisms in which a friction farce is as improtant factor for actuation.

Friction Coefficient, Torque Estimation, Smooth Shift Control Law for an Automatic Power Transmission

  • Jeong, Heon-Sul;Lee, Kyo-Ill
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.508-517
    • /
    • 2000
  • For shift quality improvement, torque sensors are currently too expensive to be used on production vehicles. To achieve smooth acceleration shift, the reference trajectory of the clutch slip speed for accomplishing the shift process within a designated shift completion time and its relationship with the clutch actuating torque were suggested by Jeong and Lee (1999). In order to facilitate the proposed algorithm, nonlinear estimators for necessary information such as the axle shaft torque, clutch friction and turbine torque were designed using only speed sensors. Accounting for the modeling error, a control law for this indirect smooth shift was proposed based on the above mentioned suggestions. Simulation results of the proposed estimators and shift controller were presented and further considerations for practical applications are discussed.

  • PDF

STUDY OF DYNAMICAL MODEL FOR PIEZOELECTRIC CYLINDER IN FRICTIONAL ANTIPLANE CONTACT PROBLEM

  • S. MEDJERAB;A. AISSAOUI;M. DALAH
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.3
    • /
    • pp.487-510
    • /
    • 2023
  • We propose a mathematical model which describes the frictional contact between a piezoelectric body and an electrically conductive foundation. The behavior of the material is described with a linearly electro-viscoelastic constitutive law with long term memory. The mechanical process is dynamic and the electrical conductivity coefficient depends on the total slip rate, the friction is modeled with Tresca's law which the friction bound depends on the total slip rate with taking into account the electrical conductivity of the foundation both. The main results of this paper concern the existence and uniqueness of the weak solution of the model; the proof is based on results for second order evolution variational inequalities with a time-dependent hemivariational inequality in Banach spaces.

A Design of Adaptive Controller with Nonlinear Dynamic Friction Compensator for Precise Position Control of Linear Motor System (선형모터 정밀 위치제어를 위한 비선형 동적 마찰력 보상기를 갖는 적응 제어기 설계)

  • Lee, Jin-Woo;Cho, Hyun-Cheol;Lee, Young-Jin;Lee, Kwom-Soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.5
    • /
    • pp.944-957
    • /
    • 2007
  • In general mechanical servo systems, friction deteriorates the performance of controllers by its nonlinear characteristics. Especially, friction phenomenon causes steady-state tracking errors and limit cycles in position and velocity control systems, even though gains of controllers are tuned well in linear system model. Even if sensor is used higher accuracy level, it is difficult to improve tracking performance of the position to the same level with a general control method such as PID type. Therefore, many friction models were proposed and compensation methods have been researched actively. In this paper, we consider that the variation of mover's mass is various by loading and unloading. The normal force variation occurs by it and other parameters. Therefore, the proposed control system is composed of main position controller and a friction compensator. A parameter estimator for a nonlinear friction model is designed by adaptive control law and adaptive backstopping control method.

Modification of Thin Film Friction and Wear Models with Effective Hardness

  • Kim, Chang-Lae;Kim, Hae-Jin
    • Tribology and Lubricants
    • /
    • v.36 no.6
    • /
    • pp.320-323
    • /
    • 2020
  • Thin film coatings are commonly exploited to minimize wear and optimize the frictional behavior of various precision mechanical systems. The enhancement of thin film durability is directly related to the performance maximization of the system. Therefore, a fine approach to analyze the thin film wear behavior is required. Archard's equation is a representative and well-developed law that defines the wear coefficient, which is the probability of creating wear particles. A ploughing model is a commonly used model to determine the friction force during the abrasive contact. The equations demonstrate that the friction force and wear coefficient are inversely proportional to the hardness of the material. In this study, Archard's equation and ploughing models are modified with an effective hardness to minimize the gap between the experimental and numerical results. It is noted that the effective hardness is the hardness variation with respect to the penetration depth owing to the substrate effect. The nanoindentation method is utilized to characterize the effective hardness of Cu film. The wear coefficient value considering the effective hardness is more than three times higher than that without considering the effective hardness. The friction force predicted with the effective hardness agreed better with the results obtained directly from the friction force detecting sensor. This outcome is expected to improve the accuracy of friction and wear amount predictions.

Influence of Friction Between Materials on the Axial Direction Pull Force in Single Clinching (싱글 클린칭 공정에서 소재간 마찰이 축방향 분리력에 미치는 영향)

  • Lee, D.W.;Sekar, R.;Lee, C.J.;Joun, M.S.
    • Transactions of Materials Processing
    • /
    • v.30 no.2
    • /
    • pp.83-90
    • /
    • 2021
  • In this paper, a parametric study on the influence of friction between materials on pull force in single clinching is conducted using an axisymmetric elasto-plastic finite element method and law of Coulomb friction. An appropriate finite element analysis model is given, which minimizes the effect of the material model and numerical factors including the number of quadrilateral finite elements and blank radius. It is emphasized that the elasto-plastic material model should be employed because the elastic deformation of the internal region is affected more by the pull force. It has been shown that the pull force increases as friction coefficient increases and that the optimized friction coefficient is around 0.4, which is qualitatively comparable with its theoretical value. When the friction coefficient reaches 0.5 in the example studied, the neck fracture is predicted.