• Title/Summary/Keyword: friction heat

Search Result 950, Processing Time 0.026 seconds

Evaluation of Heat Transfer performance of Wire-coil Inserted Tube (와이어코일 삽입법을 이용한 열전달 촉진기술 성능평가)

  • 이주동;박종호;이상천
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.5
    • /
    • pp.457-465
    • /
    • 2000
  • An experiment was carried out to evaluate the thermal performance of the wire-coil inserts method. Tested were the smooth tubes with the wire-nil inserts of various pitch and helix angle combinations. Test fluids were the 50%-solution of the ethylene glycol and the Hue water. Heat transfer coefficient and friction factors were deduced from the measured values of temperatures, flowrates and pressure drops. A unified dimensionless correlation for the heat transfer coefficients was developed as a function of the pitch to diameter ratio, the Reynolds number and the Prandtl number. An exergy analysis was performed to evaluate an optimal operating condition with the wire-coil inserts.

  • PDF

Friction Factor and Heat Transfer in Equilateral Triangular Ducts with Surface Roughness

  • Ahn, Soo-Whan
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.639-645
    • /
    • 2001
  • Experimental investigations were conducted to study forced convection of fully developed turbulent flows in horizontal equilateral triangular ducts with different surface roughness pitch ratios (P/e) of 4, 8, and 16 on one side. The ducts bottom wall was heated uniformly and the other surfaces were thermally insulated. To understand heat transfer enhancement mechanism, heat transfer rates were measured. Smooth triangular ducts were also tested for benchmark purposes. The results were compared with previous results for similarly configured channels, at which they were roughened by regularly spaced transverse ribs in the rectangular and circular channels.

  • PDF

The Thermal Analysis of Brake Disc using the Solid Model and 2D Coupled Model (솔리드모델과 2D 연성모델을 사용한 브레이크 디스크의 열해석)

  • 강상욱;김창진;이대희;김흥섭
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.93-100
    • /
    • 2003
  • This paper describes the thermoelastic instability arising from friction heat generation in braking and proposes the finite element methods to predict the variation of temperature and thermal deformation. In a conventional disc brake analysis, heat generation is only related with wheel speed and friction material and the interface pressure between disc and pad is assumed constant. But under dynamic braking conditions, the frictional heat causes the thermoelastic distortion that leads to more concentrated contact pressure distribution and hence more and more non-uniform temperature. In this paper, to complete the solution of the thermomechanically coupled problem, the linear relation model between pressure and temperature is proposed and demonstrated in examples of a simple two dimensional contact problem. And the two dimensional model has been extended to an annular three dimensional disc model in order to consider more realistic geometry and to provide a more accurate critical speed for automotive brake systems.

Numerical Analyses of Three-Dimensional Thermo-fluid flow through Mixing Vane in A Subchannel of Nuclear Reactor (원자로 부수로내 혼합날개를 지나는 삼차원 열유동 해석)

  • Choi, Sang-Chul;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.3
    • /
    • pp.311-318
    • /
    • 2003
  • The present work evaluates the effects of mixing vane shape on the flow structure and heat transfer downstream of mixing vane in a subchannel of fuel assembly. by obtaining velocity and pressure fields. turbulent intensity. flow-mixing factors. heat transfer coefficient and friction factor using three-dimensional RANS analysis. Four different shapes of mixing vane. which were designed by the authors were tested to evaluate the performances in enhancing the heat transfer. Standard k-$\varepsilon$ model is used as a turbulence closure model. and. periodic and symmetry conditions are set as boundary conditions. The flow blockage ratio is kept constant. but the twist angle of mixing vane is changed. The results with three turbulence models were compared with experimental data.

Heat Transfer and Friction in Rectangular Convergent Channels with Ribs on One Wall

  • Kim, Won-Cheol;Lee, Myung-Sung;Bae, Sung-Taek;Ahn, Soo-Whan
    • Journal of Power System Engineering
    • /
    • v.18 no.2
    • /
    • pp.12-18
    • /
    • 2014
  • The local heat transfer of developed turbulent flows in the stationary ribbed rectangular convergent channels has been investigated experimentally. The rectangular convergent channels with one ribbed surface only have the inclination of $0.72^{\circ}$ and $1.43^{\circ}$ at which the ribbed wall is manufactured with a fixed rib height (e) of 10 mm and the ratio of rib spacing (p) to height (e) =10. The measurement was conducted within the range of Reynolds numbers from 15,000 to 89,000. The local heat transfer characteristics of the rectangular convergent channels are quite different from those of the ribbed square straight channel.

Influence of External Air Velocity for Tribological Characteristics between Sintered Friction Material and Disk (외부 공기속도 변화에 따른 소결마찰재와 디스크간 마찰특성)

  • Kim, Young-Kyu;Kim, Sang-Ho;Kwon, Seok-Jin;Chung, Su-Young;Lee, Hi-Sung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.975-985
    • /
    • 2011
  • Cu-Matrix sintered brake pads and low alloyed heat resistance steel are most applied to basic brake system for high energy moving machine. In this research, we analyzed tribological characteristics for influence of air velocity between disk and pad. At low brake pressure with air flow, friction stability was decreased due to no formation of tribofilm at disk surface. But there are no significant change of friction coefficient at all test conditions. Wear rate of friction materials were decreased with increasing of air flow velocity. In result, air flow velocity influenced friction stability, wear rate of friction materials and disk but not friction coefficient.

  • PDF

Effect of Electric Current on Friction of Hydraulic Members (유압구동재의 마찰에 미치는 전류의 영향)

  • 전성재;강인혁;류미라;조연상;박흥식
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.16-21
    • /
    • 2002
  • Generally, Oxidization film are generated by friction and wear in lubricant oil. It is effect that the heat and pressure act on contact area. Because the electrons movement progress the oxidization, if the electrons movement be regulated, the thickness of oxidization film can be regulated and friction characteristics can be improved. But electronic current can deteriorate friction characteristics, so various characteristics must be investigated on transforming of electronic current. Therefor, using the Norton equation, short current were transformed between ball and disk. Also, an experiment was carried out using ball on disk type tester. So, we studied up on effect of current for friction characteristics.

  • PDF

Effect of Electric Current on Friction of Hydraulic Members (윤활하에서의 마찰 특성에 미치는 전류의 영향)

  • Jeon, Seong-Jae;Gang, In-Hyeok;Ryu, Mi-Ra;Jo, Yeon-Sang;Park, Hong-Sik
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.150-155
    • /
    • 2002
  • Generally, Oxidization film are generated by friction and wear in lubricant oil. It is effect that the heat and pressure act on contact area. Because the electrons movement progress the oxidization, if the electrons movement be regulated, the thickness of oxidization film can be regulated and friction characteristics can be improved. But electronic current can deteriorate friction characteristics, so various characteristics must be investigated on transforming of electronic current. Therefor, using the Norton equation, short current were transformed between ball and disk. Also, an experiment was carried out using ball on disk type tester. So, we studied up on effect of current for friction characteristics.

  • PDF

Friction Stability of Materials with $ZrSiO_4$ Addition ($ZrSiO_4$가 첨가된 마찰재의 마찰 안정성)

  • 이동규;박상찬
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.3
    • /
    • pp.110-119
    • /
    • 1999
  • This study was conducted to invent brake of non-steel material without using asbestos and disc pad added $ZrSiO_4$ was made. The physical properties and friction characteristics were investigated by varying methods. The physical properties were inspected of shear strength, hardness, heat expansion, specific gravity, % of gashole, thickness variation, weight variation and pH variation. The friction stability was measured by friction coefficient on variations of speed, temperature and deceleration condition. It was found that the physical properties were in general excellent. According to the friction characteristics tests, $ZrSiO_4$ had an abrasive property. As a results, the friction materials containing $ZrSiO_4$ 3~5vol% showed better resistance to fading and improved friction stability than the materials without ZrSiO$_4$.

  • PDF

Influence of External Air Velocity for Tribological Characteristics between Sintered Friction Material and Disk (외부 공기속도 변화에 따른 소결마찰재와 디스크간 마찰특성)

  • Lee, Jong Seong;Lee, Hi Sung
    • Tribology and Lubricants
    • /
    • v.29 no.1
    • /
    • pp.19-26
    • /
    • 2013
  • Cu-matrix sintered brake pads and low-alloy heat-resistant steel are commonly applied to basic brake systems in high-energy moving machines. In this research, we analyzed the tribological characteristics to determine the influence of the air velocity between the disk and pad. At a low brake pressure with airflow, the friction stability was decreased as a result of the lack of tribofilm formation at the disk surface. However, there were no significant changes in the friction coefficient under any of the test conditions. The wear rates of the friction materials were decreased with an increase in the airflow velocity. As a result, the airflow velocity influenced the friction stability, as well as the wear rate of the friction materials and disk, but not the friction coefficient.