• 제목/요약/키워드: friction forces

Search Result 492, Processing Time 0.026 seconds

A numerical study of scale effects on performance of a tractor type podded propeller

  • Choi, Jung-Kyu;Park, Hyoung-Gil;Kim, Hyoung-Tae
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.380-391
    • /
    • 2014
  • In this study, the scale effect on the performance of the podded propeller of tractor type is investigated. Turbulent flow computations are carried out for Reynolds numbers increasing progressively from model scale to full scale using the CFD analysis. The result of the flow calculation for model scale Reynolds numbers agrees well with that of the experiment of a large cavitation tunnel. The existing numerical analysis indicates that the performance of the podded propeller blades is mainly influenced by the advance coefficient and relatively little by the Reynolds number. However, the drag of pod housing with propeller in operation is different from that of pod housing without propeller due to the acceleration and swirl of propeller slipstream which is altered by propeller loading as well as the pressure recovery and friction according to Reynolds number, which suggests that the pod housing drag under the condition of propeller in operation is the key factor of the scale effect on the performance between model and full scale podded propellers. The so called 'drag ratio', which is the ratio of pod housing drag to total thrust of podded propeller, increases as the advance coefficient increases due to accelerated flow in the slipstream of the podded propeller. However, the increasing rate of the drag ratio reduces continuously as the Reynolds number increases from model to full scale progressively. The contribution of hydrodynamic forces, which acts on the parts composed of the pod housing with propeller operating in various loading conditions, to the thrust and the torque of the total propeller unit are presented for a range of Reynolds numbers from model to full scales.

Identification of the Bulk Behavior of Coatings by Nanoindentation Test and FE-Simulation and Its Application to Forming Analysis of the Coated Steel Sheet (나노인덴테이션 시험과 유한요소해석을 이용한 자동차 도금 강판의 도금층 체적 거동결정 및 성형해석 적용)

  • Lee, Jung-Min;Lee, Kyoung-Su;Ko, Dae-Cheol;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.11 s.254
    • /
    • pp.1425-1432
    • /
    • 2006
  • Coating layers on a coated sheet steel frequently affect distributions of strain rate of sheets and deteriorate the frictional characteristics between sheets and tools in sheet metal forming. Thus, it is important to identify the deformation behavior of these coatings to ensure the success of the sheet forming operation. In this study, the technique using nano-indentation test, FE-simulation and Artificial Neural Network(ANN) were proposed to determine the power law stress-strain behavior of coating layer and the power law behavior of extracted coating layers was examined using FE-simulation of drawing and nano-indentation process. Also, deep drawing test was performed to estimate the formability and frictional characteristic of coated sheet, which was calculated using the linear relationship between drawing force and blank holding force obtained from the deep drawing test. FE-simulations of the drawing process were respectively carried out for single-behavior FE-model having one stress-strain behavior and for layer-behavior FE-model which consist of coating and substrate separately. The results of simulations showed that layer-behavior model can predict drawing forces with more accuracy in comparison with single-behavior model. Also, mean friction coefficients used in FE-simulation signify the value that can occur maximum drawing force in a drawing test.

Study on the Sheet Rolling by a Rigid-Plastic Finite Element Method Considering Large Deformation Formulation (강소성 대변형 유한요소법을 이용한 판재 압연연구)

  • 김동원;홍성인
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.145-153
    • /
    • 1991
  • A numerical simulation of the nonsteady state rolling process in the plane strain condition is presented in the basis of the rigid-plastic finite element method by considering large deformation. In order to apply the large deformation theory to the numerical method for sheet rolling problems, constitutive equation relating 2nd-Piola Kirchhoff stress and Lagrangian strain which reflect geometrical nonlinearity is used. To confirm the validity of the developed algorithm, the analysis of the neutral flow region, roll separating force, torque, pressure and stress/strain distributions on the workpiece is conducted from the bite of the material until the steady state is reached. The computed results of the roll force and torque in the present finite element analysis are lower than those corresponding to small strain theory. The pressure distribution at the work piece-roll interface is found to show the typical 'friction hill' type only. The peak value in near the neutral region, however, is good agrements with the existing results. the neutral region, however, is good agrements with the existing results. The frictional force at the roll interface provide detailed information about the neutral point where the shear forces change direction. In addition, the analysis also includes the effect and influence of material condition, strip thickness, work roll diameter, as well as roll speed and lubricant on each deformation process.

Effect of passive self-ligating bracket placement on the posterior teeth on reduction of frictional force in sliding mechanics

  • Kim, Kyu-Ry;Baek, Seung-Hak
    • The korean journal of orthodontics
    • /
    • v.46 no.2
    • /
    • pp.73-80
    • /
    • 2016
  • Objective: The purpose of this study was to investigate the static (SFF) and kinetic frictional forces (KFF) in sliding mechanics of hybrid bracket systems that involve placing a conventional bracket (CB) or active self-ligating bracket (ASLB) on the maxillary anterior teeth (MXAT) and a passive SLB (PSLB) on the maxillary posterior teeth (MXPT). Methods: The samples consisted of two thoroughbred types (group 1, anterior-CB + posterior-CB; group 2, anterior-ASLB + posterior-ASLB) and four hybrid types (group 3, anterior-CB + posterior-PSLB-type 1; group 4, anterior-CB + posterior-PSLB-type 2; group 5, anterior-ASLB + posterior-PSLB-type 1; group 6, anterior-ASLB + posterior-PSLB-type 2) (n = 13 per group). After maxillary dentition alignment and maxillary first premolars removal in the stereolithographically-made typodont system, a $0.019{\times}0.025$-inch stainless steel wire was drawn through the right quadrant of the maxillary arch at 0.5 mm/min for 5 min. The SFF and KFF were measured with a mechanical testing machine and statistical analyses were performed. Results: Four different categories of SFF and KFF were observed among all groups (all p < 0.001). Group 1 demonstrated the highest SFF and KFF; groups 4 and 3 were second and third highest, respectively. The fourth category included groups 2, 5, and 6. Placing PSLBs on the MXPT resulted in significant SFF and KFF reductions in cases with CBs on the MXAT, but not in cases with ASLBs on the MXAT. Conclusions: These data might aid in the development of a hybrid bracket system that enables low-friction sliding of an archwire through the MXPT.

Realistic Deformation Analysis of Reinforced Concrete Walls (철근(鐵筋)콘크리트 벽부재(壁部材)의 실제적(實際的)인 변형해석(變形解析))

  • Oh, Byung Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.4
    • /
    • pp.1-10
    • /
    • 1983
  • The deformation and crack width of concrete walls of slabs, plates, panels and shells reinforced by a regular rectangular net of reinforcing bars and subjected to in-plane (membrane) internal forces is analyzed on the basis of a realistic model which takes into account the frictional-dilatant behavior of rough interlocked cracks, the effect of tension stiffening, and the dowel action of bars at crack crossings. Extensive numerical computer studies are carried out, and the reinforcement designs obtained from equilibrium conditions alone on the basis of either the classical frictionless approach or the recent frictional approach are compared in terms of the resulting crack widths. It is found that the use of frictional equilibrium design based on a low friction coefficient leads to a much smaller crack width than the classical frictionless design. The influences of bar diameter and crack spacing on the crack width are also studied. The model allows more realistic deformation analysis of reinforced concrete structures.

  • PDF

Characteristics on Pullout Behavior of Belled Tension Pile in Sandy Soils (사질토지반의 선단확장형말뚝의 인발거동 특성)

  • Cho, Seok-Ho;Kim, Hak-Moon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3599-3609
    • /
    • 2010
  • Recently, the construction of coastal structures and high-rise structures against the horizontal and uplift forces increases with the developing the coastal developments. Especially the application of belled tension pile as foundation type to effectively resist uplift force is increasing in coastal structures. However, research on pullout resistance of belled tension pile has been limited and not yet been fully performed. Therefore, the pullout load tests of belled tension piles in four overseas sites were performed, then the bearing capacity, characteristics on load-displacement of piles and load distribution considering skin friction were investigated in this paper. In addition, the limit pullout bearing capacity calculated by the three-dimensional finite element analysis and theoretical methods were compared with values of in-situ test.

Reliability Prediction of a Pin Puller (핀풀러 신뢰도 예측)

  • Lee, Hyo-Nam;Jang, Seung-Gyo;Oh, Jong-Yun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.8
    • /
    • pp.625-631
    • /
    • 2013
  • Reliability of a pin puller was predicted by Monte Carlo simulation. The prediction method is based on the stress-strength interference model that failure occurs if the stress exceeds the strength. In this study, the strength is considered as the energy delivered by combustion of pyrotechnics to retreat the pin to a predetermined position, whereas the stress is regarded as the energy required to resist the pin movement. The former mainly depends on the amount of pyrotechnic charge and the latter is governed by several friction forces and the energy dissipation within locking mechanism. Both the variables of stress and strength were computed using an analytical performance model. The method presented here, not depending upon a large number of test item, can be applicable to predict the reliability of other kinds of pyrotechnic devices.

Evaluation of Clamping Forces according to Length-to-diameter Ratios and Preserved Thread Lengths of High Strength Bolts (고력볼트의 길이-직경비 및 여유나사길이에 따른 조임력 평가 연구)

  • Kim, Sang Seup;Kim, Sung Yong;Kim, Kyu Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.3 s.46
    • /
    • pp.259-268
    • /
    • 2000
  • In the friction-type joints the external applied load is transmitted by frictional force acting on the contact area of the plates fastened by the high strength bolts. This frictional force is proportional to the product of the bolt clamping force and slip coefficient of the faying surface. But the bolt clamping force is dependent on many factors when the turn-of-nut method is used. The preserved thread length and length-to-diameter ratios are one of the major factors governing the bolt clamping force. This paper presents the correct method of high strength bolt tightening through the experiment on the mechanical properties on sets of high strength bolts in accordance with preserved thread length and length-to-diameter ratios.

  • PDF

Formulation for seismic response of a ship-block system

  • Kuchaksarai, Masoud Moghaddasi;Bargi, Khosrow
    • Structural Engineering and Mechanics
    • /
    • v.23 no.3
    • /
    • pp.293-308
    • /
    • 2006
  • This paper presents a complete and consistent formulation to study the seismic response of a free-standing ship supported by an arrangement of n keel blocks which are all located in a dry dock. It is considered that the foundation of the system is subjected to both horizontal and vertical in plane excitation. The motion of the system is classified in eight different modes which are Rest (relative), Sliding of keel blocks, Rocking of keel blocks, Sliding of the ship, Sliding of both keel blocks and the ship, Sliding and rocking of keel blocks, Rocking of keel blocks with sliding of the ship, and finally Sliding and rocking of keel blocks accompanied with sliding of the ship. For each mode of motion the governing equations are derived, and transition conditions between different modes are also defined. This formulation is based on a number of fundamental assumptions which are 2D idealization for motion of the system, considering keel blocks as the rigid ones and the ship as a massive rigid block too, allowing the similar motion for all keel blocks, and supposing frictional nature for transmitted forces between contacted parts. Also, the rocking of the ship is not likely to take place, and the complete ship separation from keel blocks or separation of keel blocks from the base is considered as one of the failure mode in the system. The formulation presented in this paper can be used in its entirety or in part, and they are suitable for investigation of generalized response using suitable analytical, or conducting a time-history sensitivity analysis.

Influence of a community of buildings on tornadic wind fields

  • Li, Zhi;Honerkamp, Ryan;Yan, Guirong;Feng, Ruoqiang
    • Wind and Structures
    • /
    • v.30 no.2
    • /
    • pp.165-180
    • /
    • 2020
  • To determine tornadic wind loads, the wind pressure, forces and moments induced by tornadoes on civil structures have been studied. However, in most previous studies, only the individual building of interest was included in the wind field, which may be suitable to simulate the case where a tornado strikes rural areas. The statistical data has indicated that tornadoes induce more significant fatalities and property loss when they attack densely populated areas. To simulate this case, all buildings in the community of interest should be included in the wind field. However, this has been rarely studied. To bridge this research gap, this study will systematically investigate the influence of a community of buildings on tornadic wind fields by modeling all buildings in the community into the wind field (designated as "the Community case under tornadic winds"). For comparison, the case in which only a single building is included in the tornadic wind field (designated as "the Single-building case under tornadic winds") and the case where a community of buildings are included in the equivalent straight-line wind field (designated as "the Community case under straight-line winds") are also simulated. The results demonstrate that the presence of a number of buildings completely destroys the pattern of regular circular strips in the distribution of tangential velocity and pressure on horizontal planes. Above the roof height, the maximum tangential velocity is lower in the Community case under tornadic winds than that in the Single-building case under tornadic winds because of the higher surface friction in the Community case; below the roof height, greater tangential velocity and pressure are observed in the Community case under tornadic wind fields, and more unfavorable conditions are observed in the Community case under tornadic winds than under the equivalent straight-line winds.