• Title/Summary/Keyword: friction forces

Search Result 492, Processing Time 0.032 seconds

A computed-error-input based learning scheme for multi-robot systems

  • Kuc, Tae-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.518-521
    • /
    • 1995
  • In this paper, a learning control problem is formulated for cooperating multiple-robot manipulators with uncertain system parameters. The commonly held object is also assumed to be unknown and the multiple-robots themselfs experience uncertain operating conditions such as link parameters, viscous friction parameters, suctions, actuator bias, and etc. Under these conditions, the learning controllers designed for learning of uncertain parameters and robot control inputs for multiple-robot systems are shown to drive the multiple-robot manipulators to follow the desired Cartesian trajectory with the desired internal forces to the unknown object.

  • PDF

Technology and Characteristic of Magnetic Bearing (자기 베어링의 기술 현황 및 특성)

  • Jang, S.M.;Kwon, J.K.;Cho, H.W.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1039-1041
    • /
    • 2003
  • There are many advantages of the Magnetic Bearing system, compared with conventional contacting bearing systems. Since the spindle in the Magnetic Bearing system is levitated by electro-magnetic forces and rotates without mechanical friction, it can run without lubrication. So, it can run in the extreme circumstances, e.g. a vacuum condition in the space.

  • PDF

Axial response of PWR fuel assemblies for earthquake and pipe break excitations

  • Jhung, Myung J.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.2
    • /
    • pp.149-165
    • /
    • 1997
  • A dynamic time-history analysis of the coupled internals and core in the vertical direction is performed as a part of the fuel assembly qualification program. To reflect the interaction between the fuel rods and grid cage, friction element is developed and is implemented. Also derived here is a method to calculate a hydraulic force on the reactor internals due to pipe break. Peak responses are obtained for the excitations induced from earthquake and pipe break. The dynamic responses such as fuel assembly axial forces and lift-off characteristics are investigated.

Bi-Axial Stress Field Analysis on Shear-Friction in RC Members (2축-응력장 이론을 이용한 철근콘크리트 부재의 전단마찰 해석)

  • Kim, Min-Joong;Lee, Gi-Yeol;Lee, Jun-Seok;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.1
    • /
    • pp.25-35
    • /
    • 2012
  • For a member subjected to direct shear forces, forces are transferred across interface concrete area and resisted by shear transfer capacity. Shear-friction equations in recent concrete structural design provisions are derived from experimental test results where shear-friction capacity is defined as a function of steel reinforcement area contained in the interface. This empirical equation gave too conservative values for concrete members with large amounts of reinforcement. This paper presents a method to evaluate shear transfer strengths and to define ultimate conditions which result in crushing of concrete struts after yielding of longitudinal reinforcement perpendicular to the interface concrete. This method is based on the bi-axial stress field theory where different constitutive laws are applied in various means to gain accurate shear strengths by considering softening effects of concrete struts based on the modified compression-field theory and the softened truss model. The validity of the proposed method is examined by applying to some selected test specimens in literatures and results are compared with recent design code provisions. A general agreement is observed between predicted and measured values at ultimate loading stages in initially uncracked normal-strength concrete test.

Equation for handle assessment of cotton and polyester fabrics using nozzle extraction testing method (노즐시험법을 이용한 면/폴리에스터 직물의 촉감 방정식)

  • Yoon, Chang-Hyun;Chun, Dae-Yeop;Hong, Cheol-Jae
    • Science of Emotion and Sensibility
    • /
    • v.14 no.2
    • /
    • pp.191-196
    • /
    • 2011
  • Fabric extraction force measured through nozzle tester reflects a comprehensive fabric handle. Nozzle tester takes advantage of low cost, and simple and fast operating procedure compared with KES system. The paper is to develop the semi-emprical equation for assessment of the fabric handle measured with nozzle tester on the basis of friction law. The variables considered in the equation arc fabric's frictional coefficient and drape coefficient which is determined in terms of fabric bending length and shear strain. The experiment of 12 different cotton and polyester fabrics and comparisons between experimental and theoretical results were conducted. Fabrics of high frictional coefficients, high bending length, and low shear strain showed high fabric handle forces (low handle values). The handle forces predicted from the equation agreed well with those measured, which indicates that the equation can be used to objectively evaluate fabric handle with respect to fabric's own properties and also provide an information for fabric design to improve the handle performance.

  • PDF

Rotordynamic Characteristics of Floating Ring Seals in Rocket Turbopumps

  • Tokunaga, Yuichiro;Inoue, Hideyuki;Hiromatsu, Jun;Iguchi, Tetsuya;Kuroki, Yasuhiro;Uchiumi, Masaharu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.3
    • /
    • pp.194-204
    • /
    • 2016
  • Floating ring seals offer an opportunity to reduce leakage flows significantly in rotating machinery. Accordingly, they have been applied successfully to rotating machinery within the last several decades. For rocket turbopump applications, fundamental behavior and design philosophy have been revealed. However, further work is needed to explore the rotordynamic characteristics associated with rotor vibrations. In this study, rotordynamic forces for floating ring seals under rotor's whirling motions are calculated to elucidate rotordynamic characteristics. Comparisons between numerical simulation results and experiments demonstrated in our previous report are carried out. The three-dimensional Reynolds equation is solved by the finite-difference method to calculate hydrodynamic pressure distributions and the leakage flow rate. The entrance loss at the upstream inlet of the seal ring is calculated to estimate the Lomakin effect. The friction force at the secondary seal surface is also considered. Numerical simulation results showed that the rotordynamic forces of this type of floating ring seal are determined mainly by the friction force at the secondary seal surface. The seal ring is positioned almost concentrically relative to the rotor by the Lomakin effect. Numerical simulations agree quite well with the experimental results.

Biomechanical Analysis of the Non-slip Shoes for Older People (미끄럼방지 노인화에 대한 생체역학적 분석)

  • Lee, Eun-Young;Sohn, Jee-Hoon;Yang, Jeong-Hoon;Lee, Ki-Kwang;Kwak, Chang-Soo
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.4
    • /
    • pp.377-385
    • /
    • 2013
  • Fall is very fatal accident causes death to older people. Shoe may affect to fall. Shoe influences risk of slips, trips, and falls by altering somatosensory feedback to the foot. The purpose of this study was to investigate the analysis of non-slip shoes for older people and influence on older people's lower extremity. For this study twenty three healthy older people were recruited. Each subjects walked over slippery surfaces (COF 0.08). Four pairs of non-slip shoes (shoe A had the greatest COF, 0.23 while shoe B, C, and D had smaller COF relatively) for older people were selected and tested mechanical and biomechanical experiment. For data collection motion capture and ground reaction forces were synchronized. There were statistically significant differences for slip-displacement, coefficient of friction, braking force, propulsion force, knee range of motion and knee joint stiffness by shoes. It was concluded that shoe A was the best for non-slip function because of the lowest slip displacement, the highest braking and propulsion forces, and the highest mechanical and biomechanical coefficient of friction where as shoe B, C, D were identified as a negative effect on the knee joint than shoe A. To prevent fall and slip, older people have to take a appropriate non-slip shoes such as shoe A.

A Study on the Force Balance of a Main Oxidizer shutoff Valve (산화제 개폐밸브의 힘평형에 관한 연구)

  • Jeon, Jae-Hyoung;Hong, Moon-Geun;Kim, Hyun-Jun;Lee, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.8
    • /
    • pp.812-818
    • /
    • 2009
  • A MOV(Main Oxidizer shutoff Valve) controls the flow rate of liquid oxygen into the rocket combustor by opening and shutting operations piloted by a pneumatic force. In order to improve the effective design for sealing parts of poppet and piston assemblies, the poppet assembly has been designed to be just contacted with the piston assembly. However, to avoid a gap at the poppet/piston contact surface and to evaluate the MOV operating performance, an analyze on the force balance during the closing motion have been performed. For the accuracy of the analysis, the friction forces and the hydraulic forces have been respectively obtained by experiments and CFD analysis. Through the analysis, some important design parameters such as the spring constant, poppet friction and orifice size in the force balance have been introduced and the required operation performance of the MOV has been proved feasible.

The Influence of Negative Skin Friction on Piles in Groups Connected to a Cap (부마찰력이 작용하는 기초판으로 연결된 군말뚝의 거동)

  • Lee, Cheol-Ju;Park, Byung-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.8
    • /
    • pp.25-31
    • /
    • 2006
  • Over the years the investigation of behaviour of piles in groups connected to a cap in consolidating soil has attracted far less attention than the study of isolated piles in groups. In this paper, a series of three-dimensional numerical simulations have been performed to study the behaviour of pile groups connected to a cap in consolidating ground. Both elastic no-slip and elasto-plastic slip analyses were considered. Based on the analysis results, when piles were connected to a cap, tensile forces were developed near the pile head at the outer piles. Elastic solution and no-slip analysis over-predicted the tensile force near the pile head for outer piles. Relatively speaking, the number of piles in a group is more important than the pile spacing in terms of the influence of negative skin friction on the pile behaviour. The issue on the development of tensile forces on the pile head at the outer piles is perhaps needed to be carefully considered in the pile design to prevent the damages of the pile-cap connection.

A Simplified Method for the Calculation of Skin Friction on Piles in Soft Clay (연약 지반에 시공된 말뚝의 주면마찰력 산정 간편법)

  • Kim, Soo Il;Jeong, Sang Seom;Jung, Sung Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.171-178
    • /
    • 1994
  • The skin friction on single piles was investigated by using an analytical study and a numerical analysis. The emphasis was given to the variation of skin friction on piles based on the load transfer mechanism developed for the consolidation of a surrounding soft clay. Local yield or slip at the pile-soil interface was taken into account by specifying a limiting value of shear stress. The response of a single pile was analyzed and compared to the results of field case study. Based on the results obtained, it is shown that the skin friction on a pile increases as the degree of consolidation increases and the ultimate axial forces result from the long term behavior of clay corresponding to the end of the consolidation. It is also found that the analysis using one-dimensional consolidation theory as well as two or three-dimensional non-linear analysis gives relatively reasonable results.

  • PDF