• Title/Summary/Keyword: friction forces

Search Result 492, Processing Time 0.021 seconds

Determination of Optimal Contact Forces for Multi-Jointed, Multi-Fingered Robotic Hand Considering Contacts of Inner Links (손마디 접촉을 고려한 다지 다관절 로봇손의 최적 접촉력 결정 방법)

  • 백주현;정낙영;서일홍;최동훈
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.8
    • /
    • pp.825-835
    • /
    • 1991
  • This paper deals with a case for robotic hands to grasp the objects using inner link contact as well as fingertip contact. And the case is proved to be more efficient than the case of using only fingertip contact in terms of stability and uniform distribution of the contact forces. The general algorithm for the determination of the optimal ocntact force is developed for the soft finger contact as well as the point contact with friction. To show the validity of the proposed algorithm a numerical example is illustated by employing a robotic hand with three fingers each of which has four joints.

A Study on the Characteristics of Internal Dynamic Pressure of Vane Pump (베인 펌프의 내부 비정상 압력특성에 관한 연구)

  • 정석훈;정재연
    • Tribology and Lubricants
    • /
    • v.14 no.1
    • /
    • pp.79-84
    • /
    • 1998
  • This paper presents the experimental study of the dynamic internal pressure within a vane pump. The measurement of the dynamic internal pressure acting on the line contact between the vane and the camring in a vane pump with intravanes have been investigated. The variations of the radial acting force of a vane are calculated from previously measured results of dynamic internal pressure in four chambers surrounding a vane, and the variations of the film thickness are estimated in both the rotational speed ranges from 600 to 1200 rpm and the delivery pressure ranges from 1 to 14 MPa. The experimental technic has been established to obtain the data for performance analysis, such as reaction forces between vane and camring, friction wear at the contact regions, leakage characteristics and net forces upon the pump shaft in case of the unsteady load which is forced to the intravane pressure balance type vane pump.

Damping Effects of Fluid Viscous Dampers on the Seismic Response of Bridges (교량의 지진응답거동에 작용하는 액체점성감쇠기의 감쇠효과 분석)

  • 정상모;안창모
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.379-386
    • /
    • 2001
  • Fluid viscous dampers have been used as energy dissipators or STU's (Shock Transmission Unit) in earthquake resistant designs for bridges. Viscous dampers have many advantages compared to other friction type or visco-elastic type of dampers. They do neither increase internal pier forces due to their out of phase response, nor produce reaction forces at the low velocities associated with thermal movements. Therefore, they anable the super structure to restore itself perfectly after a severe movement dut to seismic excitations. This paper investigates the response of bridges designed with viscous dampers in regard to damping coefficients, properties of dampers, and arrangements of dampers. For this purpose, time-history dynamic analyses have been performed using a very simple model relevant to a typical bridge example. Based on the results, it presents some design duidelines on how to determine a proper damping ratio and on how to arrange dampers. In usual cases, damping coefficients corresponding to about 0.2-0.3 of damping ratios seem to be very effective in bridge designs.

  • PDF

외란 관특자를 이용한 2 축 동시 가공시의 절삭력 간접 측정

  • 우중원;김태용;김종원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.276-280
    • /
    • 1996
  • This paper presents an indirect method for on-line measuring the cutting forces in contour NC milling processes by using the current signals of the servo drive motors. A Kaluman filler is used for estimating each of the load torques to the x, y-axis servo motors of a horizontal machining center. Then, the load torque induced by the friction force in the guidewayis estimated and subtracted from the total extermal torque, thus resulting in the load torque induced by the cutting force. A series of experimental works on the circular interpolated contour milling process shows good agrement between the cutting forces measured by the dynamometer and those estimated by the method presented in the paper.

  • PDF

Uplift Capacity and Creep Behavior of Concrete Pile Driven in Clay (점토지반에 타입된 콘크리트 말뚝의 인발저항 및 크리프 거동)

  • 신은철;김종인;박정준;이학주
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.371-378
    • /
    • 2001
  • The working load at pile is sometimes subjected to not only compression load but also lateral load and uplift forces. Pile foundation is essential and uplift load can be applied because of buoyancy, a typhoon, wind or seismic forces. This study was carried out to determine the uplift capacity of concrete pile foundation driven in clay. Pile was driven in clay, between pile and clay adhesion factor was estimated, and it is the mean value between the cast-in-situ-pile and steel pipe pile. When pile foundation is loaded for long time, creep behavior occurs. The behavior of creep is originated from the clay creep contacted with pile. The creep behavior of pile foundation embedded in clay is heavily depended on the thickness of clay around the pile shaft, pore water pressure in clay, and creep behavior of clay.

  • PDF

The Analysis of the Slope Stability in Embankment(I) (제체의 사면안정 해석(I))

  • 최기봉
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.4
    • /
    • pp.134-142
    • /
    • 1997
  • The stability of an embankment Impounding a water reservoir is highly depend upon the location of seepage line with the embankment. To evaluate the accurate safety factor of an embankment, it is important to illustrate the seepage phenomenon. Of particular interest is the stability following a rapid change (drawdown) of reservoir level Seepage forces in embankments are easily determined if frictional forces are expressed in relation to hydraulic gradient Ⅰ. If a piezometer is inserted into a body of embankment, the level to which free water rises is a measure of the energy at that point. From model test result, it is possible to calculate safety factors of earth embankment. To assure the validity of this research, tests were conducted with numerical experimental models. And the experiment models were constructed with slopes of 1:1.0, 1:1.5, 1:2.0, 1:2.5. Analysis of experimental results, seepage force was analyzed according to downstream time, internal friction angle and cohesion, respectively.

  • PDF

Molecular Dynamics Simulation of Deformation of Polymer Resist in Nanoimpirnt Lithography (나노임프린트 리소그래피에서의 폴리머 레지스트의 변형에 관한 분자 동역학 시뮬레이션)

  • Kim Kwang-Seop;Kim Kyung-Woong;Kang Ji-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.6 s.237
    • /
    • pp.852-859
    • /
    • 2005
  • Molecular dynamics simulations of nanoimprint lithography in which a stamp with patterns is pressed onto amorphous poly-(methylmethacrylate) (PMMA) surface are performed to study the deformation of polymer. Force fields including bond, angle, torsion, inversion, van der Waals and electrostatic potential are used to describe the intermolecular and intramolecular force of PMMA molecules and stamp. Periodic boundary condition is used in horizontal direction and Nose-Hoover thermostat is used to control the system temperature. As the simulation results, the adhesion forces between stamp and polymer are calculated and the mechanism of deformation are investigated. The effects of the adhesion and friction forces on the polymer deformation are also studied to analyze the pattern transfer in nanoimprint lithography. The mechanism of polymer deformation is investigated by means of inspecting the indentation process, molecular configurational properties, and molecular configurational energies.

Ice forces acting on towed ship in level ice with straight drift. Part II: Numerical simulation

  • Zhou, Li;Chuang, Zhenju;Bai, Xu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.2
    • /
    • pp.119-128
    • /
    • 2018
  • A numerical method is proposed to simulate level ice interaction with ship in transverse and longitudinal directions in time domain. A novel method is proposed to simulate non-symmetric transverse force in a stochastic way. On the basis of observations from the model tests, the simulation of longitudinal force combines the ice bending force acting on the waterline, submersion force below the waterline and ice friction forces caused by transverse force and ice floes rotation amidships. In the simulations the ship was fixed and towed through an intact ice sheet at a certain speed. The setup of the numerical simulation is similar to the ice tank setup as much as possible. The simulated results are compared with model tests data and the results show good agreement with the measurement.

Response Reduction of a SDOF Structure based on Friction Force Ratio of MR Controller (MR제어기의 마찰력비에 따른 단자유도 구조물의 응답감소)

  • Seong, Ji-Young;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.4
    • /
    • pp.435-443
    • /
    • 2010
  • This study presents key parameters for the structure installed with MR controller in reducing its responses. MR controller is regarded as Bingham model of which control forces are frictional and viscous ones. The parameters are identified as friction force ratios, $R_f$ and $R_h$ which are, respectively, ratio of MR controller friction force to static restoring force for free vibration and ratio of the friction force to amplitude of harmonic force. Structure-MR controller system shows nonlinear response behavior due to friction force. Energy balance strategy is adopted to transform the behavior to linear one with equivalent damping ratio. Finally, proposed equivalent linear process is compared to the nonlinear one, which turns out to give acceptably good results.

A low damage and ductile rocking timber wall with passive energy dissipation devices

  • Loo, Wei Yuen;Quenneville, Pierre;Chouw, Nawawi
    • Earthquakes and Structures
    • /
    • v.9 no.1
    • /
    • pp.127-143
    • /
    • 2015
  • In conventional seismic design, structures are assumed to be fixed at the base. To reduce the impact of earthquake loading, while at the same time providing an economically feasible structure, minor damage is tolerated in the form of controlled plastic hinging at predefined locations in the structure. Uplift is traditionally not permitted because of concerns that it would lead to collapse. However, observations of damage to structures that have been through major earthquakes reveal that partial and temporary uplift of structures can be beneficial in many cases. Allowing a structure to move as a rigid body is in fact one way to limit activated seismic forces that could lead to severe inelastic deformations. To further reduce the induced seismic energy, slip-friction connectors could be installed to act both as hold-downs resisting overturning and as contributors to structural damping. This paper reviews recent research on the concept, with a focus on timber shear walls. A novel approach used to achieve the desired sliding threshold in the slip-friction connectors is described. The wall uplifts when this threshold is reached, thereby imparting ductility to the structure. To resist base shear an innovative shear key was developed. Recent research confirms that the proposed system of timber wall, shear key, and slip-friction connectors, are feasible as a ductile and low-damage structural solution. Additional numerical studies explore the interaction between vertical load and slip-friction connector strength, and how this influences both the energy dissipation and self-centring capabilities of the rocking structure.