DOI QR코드

DOI QR Code

나노임프린트 리소그래피에서의 폴리머 레지스트의 변형에 관한 분자 동역학 시뮬레이션

Molecular Dynamics Simulation of Deformation of Polymer Resist in Nanoimpirnt Lithography

  • 김광섭 (한국과학기술원 기계공학과) ;
  • 김경웅 (한국과학기술원 기계공학과) ;
  • 강지훈 (한국과학기술원 기계공학과)
  • 발행 : 2005.06.01

초록

Molecular dynamics simulations of nanoimprint lithography in which a stamp with patterns is pressed onto amorphous poly-(methylmethacrylate) (PMMA) surface are performed to study the deformation of polymer. Force fields including bond, angle, torsion, inversion, van der Waals and electrostatic potential are used to describe the intermolecular and intramolecular force of PMMA molecules and stamp. Periodic boundary condition is used in horizontal direction and Nose-Hoover thermostat is used to control the system temperature. As the simulation results, the adhesion forces between stamp and polymer are calculated and the mechanism of deformation are investigated. The effects of the adhesion and friction forces on the polymer deformation are also studied to analyze the pattern transfer in nanoimprint lithography. The mechanism of polymer deformation is investigated by means of inspecting the indentation process, molecular configurational properties, and molecular configurational energies.

키워드

참고문헌

  1. Chou, S. Y, Krauss, P. R. and Renstrom, P. J., 1996, 'Nanoimprint Lithography,' Journal of Vacuum Science and Technology, Vol. 14, No. 6, 1996, pp. 4129-4133 https://doi.org/10.1116/1.588605
  2. Haisma, J., Verheijen, M. and Heuvel, K., 1996, 'Mold-Assisted Nanolithography: A Process for Reliable Pattern Replication,' Journal of Vacuum Science and Technology, Vol. 14, No. 6, pp. 4124-4128 https://doi.org/10.1116/1.588604
  3. Alkaisi, M. M., Blaikie, R J. and McNab, S. J., 2001, 'Low Temperature Nanoimprint Lithography Using Silicon Nitride Molds,' Microelectronic Engineering, Vol. 57-58, pp. 367-373 https://doi.org/10.1016/S0167-9317(01)00435-X
  4. Taniguchi, J., Tokano, Y, Miyamoto, I., Komuro, M. and Hiroshima, H., 2002, 'Diamond Nanoimprint Lithography,' Nanotechnology, Vol. 13, pp. 592-596 https://doi.org/10.1088/0957-4484/13/5/309
  5. Chou, S. Y, Kelmel, C. and Gu, J., 2002, 'Ultrafast and Direct Imprint of Nanostructures in Silicon,' Nature, Vol. 417, No. 20, pp. 835-837 https://doi.org/10.1038/nature00792
  6. Tanaka, K., Kato, T. and Matsumoto, Y., 2003, 'Molecular Dynamics Simulation of Vibrational Friction Force due to Molecular Deformation in Confined Lubricant Film,' ASME Journal of Tribology, Vol. 125, pp. 587-591 https://doi.org/10.1115/1.1538194
  7. Zhang, L., Balasundaram, R, Gehrke, S. H. and Jiang, S., 2001, 'Nonequilibrium Molecular Dynamics Simulations of Confined Fluids in Contact With the Bulk,' Journal of Chemical Physics, Vol. 114, No. 15, pp. 6869-6877 https://doi.org/10.1063/1.1359179
  8. Zhang, H. and Ono, K., 2003, 'Molecular Dynamics Study of Dynamics Study of Dynamic Contact and Separation between Tip and Disk Surface,' Tribology International, Vol. 36, pp. 361-365 https://doi.org/10.1016/S0301-679X(02)00210-4
  9. Li, B., Clapp, P. C., Rifkin, J. A. and Zhang, X. M., 2001, 'Molecular Dynamics Simulation of Stick-Slip,' Journal of Applied Physics, Vol. 90, No.6, pp. 3090-3094 https://doi.org/10.1063/1.1394916
  10. Kim, Y, Lee, S., Na, K., Son, H. and Kim, J., 2003, 'Three Dimensional Molecular Dynamics Simulation of Nano-Lithography Process for Fabrication of Nanocomponents in Micro Elector Mechanical Systems (MEMS) application,' Transactions of the KSME (A), Vol. 27, No. 10, pp. 1754-1761 https://doi.org/10.3795/KSME-A.2003.27.10.1754
  11. Park, S. and Cho, S.-S., 2004, 'Molecular Dynamics Simulation of Adhesive Friction of Silicon Asperity,' Transactions of the KSME (A), Vol. 28, No. 5, pp. 247-553 https://doi.org/10.3795/KSME-B.2004.28.3.247
  12. Nose, S. 1984, 'A Unified Formulation of the Constant Temperature Molecular Dynamics Methods,' Journal of Chemical Physics, Vol. 81, No. 1, pp. 511-519 https://doi.org/10.1063/1.447334
  13. Hoover, W. G, 1985, 'Canonical Dynamics: Equilibrium Phase-space Distribution,' Physical Review A, Vol. 31, No. 3, pp. 1695~1697 https://doi.org/10.1103/PhysRevA.31.1695
  14. Okada, 0, Oka, K., Kuwajima, S., Toyoda, S. and Tanabe, K., 2000, 'Molecular Simulation of an Amorphous Poly(methylmethacrylate)-Poly(tetrafluoroethylene) Interface,' Computational and Theoretical Polymer Science, Vol. 10, pp. 371~381 https://doi.org/10.1016/S1089-3156(00)00002-7
  15. Cornell, W. D., Cieplak, P., Bayli, C. I., Gould, I. R., Merz, K. M., Ferguson, D. M., Spellmeyer, D. C., Fox, T., Caldwell, J. W. and Kollman, P. A., 1995, 'A Second Generation Force Field for the Simulation of Protein, Nucleic Acids, and Organic Molecules,' Journal of American Chemical Society, Vol. 117, pp. 5179-5197 https://doi.org/10.1021/ja00124a002

피인용 문헌

  1. Fracture Behavior of Glass/Resin/Glass Sandwich Structures with Different Resin Thicknesses vol.34, pp.12, 2010, https://doi.org/10.3795/KSME-A.2010.34.12.1849
  2. Molecular dynamics study of pattern transfer in nanoimprint lithography vol.25, pp.2, 2007, https://doi.org/10.1007/s11249-006-9053-4