• Title/Summary/Keyword: friction and wear tests

Search Result 239, Processing Time 0.02 seconds

Friction and Wear Characteristics of Carbon Fiber Reinforced Composites against Lay-up Orientation (CFRP 복합재의 적층방향에 대한 마찰 및 마모 특성)

  • Koh, S.W.;Choi, Y.K.
    • Journal of Power System Engineering
    • /
    • v.9 no.2
    • /
    • pp.57-64
    • /
    • 2005
  • This paper is the study on dry sliding wear behavior of carbon fiber reinforced epoxy matrix composites against lay-up orientation. Tests were investigated on the effect of the lay-up orientation, fiber sliding direction, load and sliding velocity when circumstance keep continuously at $21^{\circ}C$, 60%RH. Pin-on-disk dry sliding wear tests for each experimental condition were carried out with a carbon fiber reinforced plastic pin on stainless steel disk in order to search the friction and wear characteristics. The wear rates and friction coefficients against the stainless steel counterpart were experimentally determined and the wear mechanisms were microscopically observed. The effect on friction and wear behavior are observed differently, according to various conditions. When sliding took place against counterpart, the highest wear resistance and the lowest friction coefficient were observed in the $[0]_{24s}$ lay-up orientation at anti-parallel direction.

  • PDF

Fretting Wear and Friction of lnconel 690 for Steam Generator Tube in Elevated Temperature Water

  • Lee, Young-Ze;Lim, Min-Kyu;Oh, Se-Doo
    • KSTLE International Journal
    • /
    • v.3 no.1
    • /
    • pp.49-53
    • /
    • 2002
  • Inconel 690 for nuclear steam generator tube has more chromium than the conventionally used Inconel 600 in order to increase the corrosion resistance. TD evaluate the tribological characteristics under fretting condition the fretting tests as well as sliding tests were carried out in elevated temperature water environment. Fretting tests of the cross-cylinder type were done under various vibrating amplitudes and applied normal loads in order to measure the friction forces and wear volumes. Also, the conventional sliding tests of pin-en-disk type were carried out to compare the test results. In fretting, the friction was very sensitive to the load and the amplitude. The friction coefficient decreased with increasing load and decreasing amplitude. Also, the wear of Inconel 690 can be predictable using the work rate model. Depending on normal loads and vibrating amplitudes, distinctively different wear mechanisms and of ten drastically different wear rates can occur. It was fecund that the fretting wear coefficients in water were increased as increasing the temperature of water.

Friction and Wear Behavior of Carbon/carbon Composite Materials and its Application to a Neural Network (탄소/탄소 복합재료의 마찰 및 마모 거동과 신경회로망에의 적용에 관한 연구)

  • 류병진;윤재륜;권익환
    • Tribology and Lubricants
    • /
    • v.10 no.4
    • /
    • pp.13-26
    • /
    • 1994
  • Effects of resin contents, number of carbonization, graphitization, sliding speed, and oxidation on friction and wear behavior of carbon/carbon composite materials were investigated. Friction and wear tests were carried out under various sliding conditions. An experimental setup was designed and built in the laboratory. Stainless steel disks were used as the counterface material. Friction coefficient, emperature, and wear factor were measured with a data acquisition system. Wear surfaces were observed by the scanning electron microscope. It has been shown that the average friction coefficient was increased with the sliding speed in the range of 1.43~6.10 m/s, but it as decreased in the range of 6.10~17.35 m/s. Specimens prepared by different numbers of carbonization. showed variations in friction coefficient and friction coefficient of the graphitized specimen was the highest. Friction coefficients depended on contribution of the plowing and adhesive components. As the number of carbonization was increased, wear factor was reduced. Wear factor of the graphitized specimens dropped further. In the case of graphitized specimens, sliding speed had a large influence on wear behavior. When the tribological experiments were conducted in nitrogen atmosphere, the wear factor was decreased to two thirds of the wear factor obtained in air. It is obvious that the difference was affected by oxidation. Results of friction and wear tests were applied to a neural network system based on the backpropagation algorithm. A neural network may be a valuable tool for prediction of tribological behavior of the carbon/carbon composite material if ample data are present.

Friction, Wear and Scuffing Life of Piston Rings With Several Coating for Low Friction Diesel Enging (다양한 박막을 증착한 디젤 엔진용 피스톤링과 실린더 블록의 마찰 마멸 및 스커핑 수명 평가)

  • Ahn, Tae-Sik;Cho, Dae-Hyun;Oh, Chung-Soon;Lee, Young-Ze
    • Tribology and Lubricants
    • /
    • v.23 no.4
    • /
    • pp.170-174
    • /
    • 2007
  • Wear and scuffing tests were conducted using friction and wear measurement of piston rings and cylinder blocks in low friction diesel engine. The frictional forces, wear amounts and cycles to scuffing in boundary lubricated sliding condition were measured using the reciprocating wear tester. The cylinder blocks were used as reciprocating specimens, and the piston rings with several coatings were used as fixed pin. Several coatings were used such as DLC, TiN, Cr-ceramic and TiAlN in order to improve the tribological characteristics. From the tests wear volume of piston ring surfaces applied various coatings were compared. During the tests coefficients of friction were monitored. Test results showed that DLC coatings showed good tribological properties. TiN and Cr-ceramic coated rings showed good wear resistance properties but produced high friction.

Behavior of Reciprocating Dry Sliding Wear of Plastics Against Steel (플라스틱재료의 왕복동 마찰마멸거동)

  • 김충현;안효석;정태형
    • Tribology and Lubricants
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2000
  • Friction and wear tests have been performed on nylon, acetal resin, and PTFE (polytetrafluoroethylene), in reciprocating dry sliding conditions against steel discs. According to the results, acetal resin showed the lowest wear rates and PTFE exhibited the lowest friction coefficient. The prominent wear mechanisms found were adhesion and abrasion.

A dry wear behavior as hardness difffrence in a dual disc on disc sliding wear tests (디스크 언 디스크 시스템에서 경도에 따른 건식 마모거동)

  • Kim Junghyun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.5
    • /
    • pp.16-23
    • /
    • 2004
  • The wear behavior as the hardness of the sliding elements on the dry wear has been investigated using a disc on disc configuration. The materials of the specimens are used as ten kinds along their hardness. In this study, both upper and lower specimens have been used the same materials. Using experimental data, we figured the relationship between wear coefficient and friction coefficient, and the relationship between wear coefficient and friction temperature. Also we combined friction temperature and friction coefficient instead of wear coefficient. We substituted this into wear equation of Archard. The result had been derived a newly wear equation in disc on disc wear system.

Reciprocating Wear Test of AISI 52100 Bearing Steel in h-BN-based Aqueous Lubricants

  • Gowtham Balasubramaniam;Dae-Hyun Cho
    • Tribology and Lubricants
    • /
    • v.39 no.6
    • /
    • pp.228-234
    • /
    • 2023
  • In this study, reciprocating wear tests are performed on AISI 52100 bearing steel to investigate its tribological behavior in a hexagonal boron nitride (h-BN) water solution. The h-BN-based aqueous lubricant is prepared using an atoxic procedure called ultrasonic sonication in pure water. Ball-on-flat reciprocating sliding experiments are conducted, where the ball is slewed on a fixed flat at 50-㎛ displacement. The lubricating behavior of h-BN is compared with that of deionized (DI) water. Results show that the friction coefficient is higher in h-BN testing than that in DI tests, but the results are equalized as the friction coefficient reaches a stable level. Scanning electron microscopic images reveal significant material loss in the center and mild abrasion on the edge of the wear scar in h-BN tests. However, these effects are minor in DI water situations. The results of energy-dispersive X-ray spectroscopy show that considerable oxidation occurs in the central zone of the wear scar in h-BN cases with strong adhesion and material removal. These findings reveal the importance of determining ideal circumstances that can tolerate material friction and wear.

Material Transfer of MoS2 Wear Debris to Diamond Probe Tip in Nanoscale Wear test using Friction Force Microscopy (마찰력현미경을 이용한 나노스케일 마멸시험 시 다이아몬드 탐침으로의 MoS2 마멸입자 전이현상)

  • Song, Hyunjun;Lim, Hyeongwoo;Seong, Kwon Il;Ahn, Hyo Sok
    • Tribology and Lubricants
    • /
    • v.35 no.5
    • /
    • pp.286-293
    • /
    • 2019
  • In friction and wear tests that use friction force microscopy (FFM), the wear debris transfer to the tip apex that changes tip radius is a crucial issue that influences the friction and wear performances of films and coatings with nanoscale thicknesses. In this study, FFM tests are performed for bilayer $MoS_2$ film to obtain a better understanding of how geometrical and chemical changes of tip apex influence the friction and wear properties of nanoscale molecular layers. The critical load can be estimated from the test results based on the clear distinction of the failure area. Scanning electron microscopy and energy-dispersive spectroscopy are employed to measure and observe the geometrical and chemical changes of the tip apex. Under normal loads lower than 1000 nN, the reuse of tips enhances the friction and wear performance at the tip-sample interface as the contact pair changes with the increase of tip radius. Therefore, the reduction of contact pressure due to the increase of tip radius by the transfer of $MoS_2$ or Mo-dominant wear debris and the change of contact pairs from diamond/$MoS_2$ to partial $MoS_2$ or Mo/$MoS_2$ can explain the critical load increase that results from tip reuse. We suggest that the wear debris transfer to the tip apex should be considered when used tips are repeatedly employed to identify the tribological properties of ultra-thin films using FFM.

Friction and Wear Behavior of Carbon/Carbon Composites for Aircraft Brake Material (항공기 브레이크 재료용 탄소/탄소 복합재료의 마찰 및 마모 거동)

  • 우성택;윤재륜
    • Tribology and Lubricants
    • /
    • v.9 no.1
    • /
    • pp.62-69
    • /
    • 1993
  • Friction and wear behavior of a carbon/carbon composite material for aircraft brake material was experimentally investigated. Friction and wear test setup was designed and built for the experiment. Friction and wear tests were conducted under various sliding conditions. Friction coefficients were measured and processed by a data acquisition system and amount of wear measured by a balance. Stainless steel disk was used as the counterface material. Temperature was also measured by inserting thermocouple 2.5 mm beneath the sliding surface of the carbon/carbon composite specimen. Wear surfaces were observed by SEM, and analyzed by EDAX. The experimental results showed that sliding speed and normal force did not have significant effects on friction coefficient and wear factor of the composite. Temperature increase just below the surface was not large enough to cause any thermal degradation or oxidation which occurred at higher temperature when tested by TGA. Wear film was generated both on the specimen and on the counterface at relatively low sliding speed but cracks, grooves, and wear debris were observed at high sliding speed. Friction coefficient remained almost constant when the sliding speed or normal load was varied. It is believed that the adhesive and abrasive components contributed mainly to the friction coefficient. Wear behavior at low sliding speed was governed by wear film formation and adhesive wear mechanism. At high speed, fiber orientation, ploughing by counterface asperities, and fiber breakage dominated wear of the carbon/carbon composite.

Frriction and Wear of Siamond-Like Carbon Films Produced by Plasma-Assisted CVD Technique

  • AkihiroTanaka;KazunoriUmeda;KazuyukiMizuhara;Ko, Myoung-Wan;Kim, Seong-Young;Shin, Seung-Yong;Lee, Sang-Hyun
    • The Korean Journal of Ceramics
    • /
    • v.3 no.3
    • /
    • pp.182-186
    • /
    • 1997
  • Diamond-like carbon(DLC) films were deposited on silicon substreates by using an RF plasmaassisted CVD apparatus; the effects of deposition conditions such as CH4 gas pressure and substrate bias voltage on DLC film friction and wear were examined in both friction and scratch tests. In friction tests critical loads at which the friction coefficient increases abruptly depend on substrate bias voltages: critical loads deposited at a bias voltage of -100 V exceed those deposited at other bias voltages. Critical loads are correlated with DLC film hydrogen content. Critical DLC film loads in scratch tests depended considerably less than in friction tests. The friction coefficient of DLC films depends on neither substrate bias voltage nor CH4 gas pressure.

  • PDF