• Title/Summary/Keyword: friction, safety equipment

Search Result 21, Processing Time 0.021 seconds

Transient analysis of lubrication with a squeeze film effect due to the loading rate at the interface of a motor operated valve assembly in nuclear power plants

  • Jaehyung Kim;Sang Hyuk Lee;Sang Kyo Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2905-2918
    • /
    • 2023
  • The valve assembly used in nuclear power plants is important safety-related equipment. In the new standard, the physical attributes are measured using a valve diagnosis test, which is used in the expansion to other non-tested valves using a quantitative test-basis methodology. With a motor-operated actuator, the state of stem's lubrication is related to physical attributes such as the stem factor and the friction coefficient. This study analyzed the numerical transient of fluid and solid lubrication with a squeeze film effect due to the loading rate on the stem and the stem nut using the experimental data. The differential equation that governs the motion mechanism of the stem and stem nut is established and analyzed. The flow rate, the fluid and the solid contact forces are calculated with the friction coefficient. Finally, we found that a change in the friction coefficient results from a change of the shear force in the solid contact mode during the interchange process between the solid contact mode and the fluid contact mode. The qualitative understanding of the squeeze film effect is expanded quantitatively for forces, thread surface distance, velocity, and acceleration, with consideration of the metal solid contact and fluid contact.

Design of safety equipment for the parking (자동차 주ㆍ정차를 위한 안전장비 디자인에 관한 연구)

  • 김기수
    • Archives of design research
    • /
    • v.16 no.1
    • /
    • pp.281-288
    • /
    • 2003
  • Beyond the millennium industrial development affects all of our life, and the growth of the automobile among them provides us with convenience of the living. One, however, was regarded as important to recognize the safety of the parking rather today than any past, getting together with the increasing auto population into the popularization gradually. It was needed to develope an active system and safety equipment in order to protect against an accident because there were so many accidents during the parking about which one felt relief. The objectives of this study was to develop a supporting structure with high static friction, adapt to various road environments, such as an unpaved road, a wet paved road, controling an angle, considering a portable and moveable device in order to prevent an accident during parking. As it mentioned above, the novel supporting structure had four strengths rather than a previous supporting structure, a practical new design (1998 084336 B60C) The implication of the study was the inspiration from warning of the parking accident almost 10 % of the total traffic accident in Korea, tries to find a solution to a problem in order to decrease the parking accident, in addition, makes it regulation ,and it was implied to the orientation about the popularization and the practical use of the new supporting structure which was developed

  • PDF

Research on Development of Dynamo based Vehicle Brake force Inspection Equipment (다이나모 기반의 차량 제동력 검사장비 개발 연구)

  • Lim, Jinwoo;Lee, Kwang-Hee;Kim, John;Lee, Chul-Hee
    • Journal of Auto-vehicle Safety Association
    • /
    • v.9 no.4
    • /
    • pp.20-25
    • /
    • 2017
  • Dynamo based vehicle inspection device is end of line device for automobile industry. The device is utilized as implementing vehicle functionality inspection such as brake force, cruise control, kick-down acceleration, CAN inspection. As dynamo based inspection device is broadly adopted in automobile industry, the dynamic study is required to verify the vehicle test equipment reliability. This research recommends appropriate dynamic brake force inspection procedure and theoretical background for developed equipment. Dynamic characteristic of brake force implementation to roller is simplified. With simplified characteristics, the indirect brake force measurement strategy is developed and adopted. Comparison of each brake force result, the appropriate brake force inspection criterion is given.

A Shaking Table Test for Equipment Isolation in the NPP (II): FPS (원전기기의 면진을 위한 진동대 실험 II : FPS)

  • Kim, Min-Kyu;ZChoun, Young-Sun;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.5 s.39
    • /
    • pp.79-89
    • /
    • 2004
  • This paper presents the results of experimental studies on the equipment isolation effect in the nuclear containment. For this purpose, shaking table tests were performed. The purpose of this study is enhancement of seismic safety of equipment in the Nuclear Power Plant. The isolation system, known as Friction Pendulum System (FPS), combines the concepts of sliding bearings and pendulum motion was selected. Peak ground acceleration, bidirectional motion, effect of vertical motion and frequency contents of selected earthquake motions were considered. As a result, these are founded that the vertical motion of seismic wave affect to the base isolation and the isolation effect decreased in case of near fault earthquake motion.

Reliability Analysis of Slab Transfer Equipment in Hot Rolling Furnace (열간압연 가열로 슬라브 이송장치 신뢰도 해석)

  • Bae, Young-Hwan
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.1 s.73
    • /
    • pp.6-14
    • /
    • 2006
  • The development of automatic production systems have required intelligent diagnostic and monitoring functions to overcome system failure and reduce production loss by the failure. In order to perform accurate operations of the intelligent system, implication about total system failure and fault analysis due to each mechanical component failures are required. Also solutions for repair and maintenance can be suggested from these analysis results. As an essential component of a mechanical system, a bearing system is investigated to define the failure behavior. The bearing failure is caused by lubricant system failure, metallurgical deficiency, mechanical condition(vibration, overloading, misalignment) and environmental effects. This study described slab transfer equipment fault train due to stress variation and metallurgical deficiency from lubricant failure by using FTA.

A Study on the Design of a High-Speed Pneumatic Cushion Cylinder (고속 공기압 쿠션 실린더의 설계에 관한 연구)

  • Kim, Do-Tae;Kim, Dong-Soo;Ju, Min-Jin
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.5
    • /
    • pp.491-497
    • /
    • 2009
  • Of all of pneumatic components utilized in the make up of pneumatic circuits on either automatic assembly machine or industrial equipment, the pneumatic cylinder is more oriented toward being a structural as well as a pneumatic member. The structural design must be based to a large degree on the end of application of the cylinder on the equipment it is operating. In this paper, design studies of a double-acting pneumatic cushion type cylinder with low-friction and high-speed driving have been developed. Of interest here is to investigate the stress and strain analysis of cylinder tube, piston rod, end cover, and to analyze the buckling of piston rod. A finite element analysis is carried out to compute the distribution of the displacement, stress and safety factors by using ANSYS. As a result, the structural safety factors of each parts in pneumatic cushion cylinder are evaluated and confirmed at the design specifications.

  • PDF

Design of a Seismic Isolation Table for both indoor and outdoor Electrical Communication Equipment (전기통신설비를 위한 옥내외 겸용 면진테이블 설계)

  • Lee, Chun-Se;Ahn, Hyeong-Joon;Lee, Taek-Won;Son, In-Chul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.472-472
    • /
    • 2009
  • The safety of cultural properties, medical treatment and electrical communication equipments in a building was hardly considered against the earthquake induced vibration, while the integrity of the building structure has been taken into account through the resistant earthquake design. This paper presents design of a seismic isolation table for both indoor and outdoor electrical communication equipment. First of all, artificial earthquake waves compatible with floor and ground response spectra for electrical communication equipments are generated using previously recorded seismic waves. Two kinds of one-degree-of-freedom seismic isolation table systems: spring-linear damper and spring-friction damper systems are considered and their responses to artificial earthquake waves are simulated. Design parameter study for two seismic isolation tables are performed through simulations and a seismic isolation table for both indoor and outdoor electrical communication equipment is designed considering the simulation results.

  • PDF

The Development for Blending Brake System of Electrical Multiple Unit used by Electric Brake (전기제동을 이용한 전동차의 혼합제동장치의 개발방향)

  • Lee, Woo-Dong
    • Proceedings of the KIEE Conference
    • /
    • 2008.04c
    • /
    • pp.155-157
    • /
    • 2008
  • An electric multiple unit(EMU) consists of car body, bogie and brake equipment which is directly related to safety and performance of the motorcar. The blending brake mixed an electric brake and a friction brake is to reduce the energy by applying the restoration energy caused when the motorcar is stopped to car lines and to curtail the maintenance cost by saving the friction brake use. We have developed the advanced EMU since 2004, based on the experiences on the standard EMU in 1999, and we develop the installation which minimizes the use rate of the friction air brake by maximizing the electric brake use in the existing blending brake. We could accomplish the goal by improving the motorcar's Performance and solving the restoration energy's deficit by the friction brake. Actually, when it comes to the test results of standard EMU, except the service brake, in most conditions, we use electric brake to meet the requirements of the necessary brake power, exclusive when the motorcar leaves and stops. Therefore, in this paper, we consider the design concept of motorcar's blending brakes and suggest the way to develop the blending brake using the electric brake maximumly, which is caused by adequately controling the electric brake and the restoration brake.

  • PDF

A study on calculation of friction coefficient and packing stress using static diagnosis test for a balanced globe valve in nuclear power plants

  • Kim, Jaehyung;Lim, Taemook;Ryu, Ho-Geun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2509-2522
    • /
    • 2021
  • A valve assembly used in nuclear power plants must be qualified and supervised. New technical standards such as ASME QME-1 2007 particularly require detailed qualification using experiment and analysis. Particularly, diagnostic tests and engineering studies are required for qualification of ASME QME-1 2007. Among these studies, the research on the measurement of friction coefficient and packing stress is important. The irregular change of packing stress along the stroke distance occurs because of the abnormal phenomenon, which must be found and studied with quantitative methods. Packing stress should be analyzed conservatively through experimentation and analysis. In this study, various formulas were applied to measure and calculate coefficient of friction and packing stress. This study can be used in relation to qualification and supervision of packing materials. And the calculation using static diagnosis test can be used to find the packing frictional force in dynamic diagnosis test with flow pressure in a pipe. This study has made it possible to reliably consider packing frictional force generated in a valve body. And so, it is believed that more margin can be secured when evaluating the capacity of valve actuator by applying the accurate frictional force generated in the valve assembly.

Development of Low-pressure Gas Gun Type Impact Tester using CFD Simulation (유동해석을 통한 저압 가스 건 타입 고속 충격시험기 개발)

  • P. H. Kim;S. K. Lee;O. D. Kwon;K. Lee
    • Transactions of Materials Processing
    • /
    • v.33 no.5
    • /
    • pp.309-314
    • /
    • 2024
  • Supersonic aircraft and missiles often encounter damage issues due to high-speed collisions with small objects such as ice particles and water droplets. This can significantly impact the safety and performance of these vehicles, making the assessment and development of collision testing crucial. Existing collision testing methods have relied on equipment such as gas guns, which utilize high pressure. However, most accelerators for projectiles are large-scale devices designed for weaponry and high-pressure gases, rendering them inaccessible and unsuitable for laboratory use. Therefore, there is a need for research into easily accessible and economically efficient testing devices at the laboratory level. An impact tester can launch a projectile with a velocity of 100 m/s using low-pressure compressed air at approximately 10 bar. The velocity of the impact tester projectile is determined by the pressure within the chamber, friction, and the length of the barrel. In this study, computational fluid dynamics was utilized to define friction coefficients that match experimental results based on projectile weight, enabling accurate prediction of velocity. The resulting data provides practical and effective insights for the design of impact testers, utilizing the defined friction coefficients to understand and predict complex physical phenomena.